

Assembly Language
Programming on
the Sinclair QL
programming the 68008 micprocessor

Andrew Pennell

2

First published 1984 by:
Sunshine Books (an imprint of Scot Press Ltd.)
12-13 Little Newport Street
London WC2R 3LD

Copyright © Andrew Pennell, 1984

® Sinclair QL, QL Microdrive and SuperBASIC are Trade Marks of
Sinclair Research Ltd.
© The contents of the QL are the copyright of Sinclair Research Ltd.
® Quill, Archive, Abacus and Easel are Trade Marks of Psion Software Cvs
Ltd.

All rights reserved. No part of this publication may be
reproduced, stored in a retrieval system, or transmitted in any
form or by any means; electronic, mechanical, photocopying,
recording and/or otherwise, without the prior written permission
of the Publishers.

British Library Cataloguing in Publication Data
Pennell, Andrew

Assembly language programming on the Sinclair QL.
1. Sinclair QL (Computer)—Programming
2. Assembler language (Computer program language)

I. Title
001.64'24 QA76.8.S625

ISBN 0-946408-42-4

Cover design by Grad Graphic Design Ltd.
Illustration by Stuart Hughes.
Typeset by Paragon Photoset, Aylesbury.
Printed in England by Short Run Press Ltd, Exeter.

CONTENTS

Introduction

1 Memory, Bits and Bytes

2 Inside the QL

3 The MOVE Instruction and Addressing Modes

4 Condition Codes, Branching and Arithmetic

5 Further Instructions and Passing Parameters

6 Exception Processing, Traps and Interrupts

7 Using the Hardware and Firmware

8 An A-Z of the 68008 Instruction Set

9 The 68008 Disassembler

10 Other 68000 Series Devices

Epilogue: Multi-tasking — an Example

References

Index

Contents in detail

CHAPTER 1
Memory, Bits and Bytes
Memory — ROM — RAM — hex — binary — two's-complementing —
SuperBASIC functions.

CHAPTER 2
Inside the QL
What makes the QL tick — 68008 registers — status register —
supervisor and user modes — memory map — storing machine code —
hex loader.

CHAPTER 3
The MOVE Instruction and Addressing Modes
The MOVE instruction — addressing modes — stack pointer — other
MOVES.

CHAPTER 4
Condition Codes, Branching and Arithmetic
Condition codes — SUB instruction — branches — CMP instruction —
looping using DBcc — subroutines — CLR instruction — ADD — OR —
EOR — shifts and rotates — printing in hex.

CHAPTER 5
Further Instructions and Passing Parameters
LEA — NOP —EXG— NOT — NEG—- SWAP — passing parameters.

CHAPTER 6
Exception Processing, Traps and Interrupts
Exception processing — vector table — interrupts — traps — user-
defined exceptions.

CHAPTER 7
Using the Hardware and Firmware
The screen — colour modes — plotting points — printing characters
The 8049 — scanning the keyboard — the alternate screen —
disabling QDOS.

CHAPTER 8
An A-Z of the 68008 Instruction Set
Calculating addressing bytes — addressing modes — complete
instruction set.

CHAPTER 9
The 68008 Disassembler
The algorithm — disassembler — description — converting to
machine code — full version.

CHAPTER 10
Other 68000 Series Devices
Other 68000 series processors — support devices — the 68881 maths
processor — 68486/7 graphics system.

Introduction
The Sinclair QL has been hailed as a major breakthrough in
personal computing and in part this is because of the
microprocessor it uses — the Motorola 68008. Since its launch the
machine has been the subject of much controversy particularly
when delivery dates were not fulfilled.

Even before its production problems were known there was comment
on the claims made by the advertisements saying that the QL was a
'32 bit' machine. Critics argued that it was only an 8 bit
machine.

This book is concerned with the 68008 and programming it on the
QL. I would hope that by the end of this book you will be able to
form your own conclusions as to whether it is a 32 bit device or
not. I personally feel that it has the power of a 32 bit chip,
but not the speed.

If you have programmed any 8 bit devices before, you will
probably find programming the 68008 easy, compared with whatever
you've used previously. On the other hand, if this is your first
processor, you will think all the 8 bit chips are positively
prehistoric in comparison, and you could well be right!

Credit where it's due
I would like to express my sincere thanks to the following:

My parents and friends, for their patience while I wrote this;

Mike Salem and David Link for their invaluable technical
assistance;

Sinclair Research for inventing the QL and supplying technical
information;

Motorola for inventing the 68000 series and supplying data on it;
All those at Sunshine for persuading (and bullying) me to get
this done;

and Apple, for teaching Macintosh about Man.

Andrew Pennell
Cliftonville, Kent

August 1984

CHAPTER 1 Memory, Bits and Bytes

This chapter aims to introduce all the technical terms used in the
rest of the book, and is intended for the newcomer to machine-code
programming.

However, even if you've done machine code on other machines, you
should still find some of this is new to you.

The two most important parts inside any computer are its memory,
and its processor. The memory stores all the programs and data,
which is required for the processor to work properly. Within the
memory, everything is stored as numbers, even if it seems as if it
is storing words, like LET and PRINT. What the numbers actually
mean and do depends on how they are used. Memory is referred to by
its address. A memory address is a number from 0 up to, well, it
depends, normally on the QL it stops at 262143. At each address,
data is stored, in the form of a number from 0 to 255, which is
known as a byte. All memory can have its contents inspected, by
reading, and in SuperBASIC the function PEEK is the way to read
memory. For example: to see what numbers lie from address 0 up to
address 40, a BASIC program like this could be used:

10 FOR i=0 TO 40
20 PRINT "At address ";i;"the data is";PEEK(i)
30 NEXT i

which will produce various numbers, and you will notice that all
the data lies between 0 and 255, as it should. (Don't worry about
what these particular numbers mean — they are explained later, in
Chapter 7.)

There are two types of memory, RAM and ROM. ROM stands for
Read Only Memory, and its contents are permanently fixed at the
time of manufacture. It is used for storing things that must always
be in the machine, and on the QL the ROM contains the SuperBASIC
language, and the QDOS operating system.

RAM stands for Random Access Memory, and can be read, like ROM,
and also written to, so its contents can be altered. Things like
SuperBASIC cannot be stored in RAM because its contents are lost
when the power is removed, unlike ROM. On the QL, the RAM is used
for storing things that need to be changeable including the screen
display and BASIC programs. To alter RAM contents from SuperBASIC,
the POKE command is used, followed by two numbers — the first is
the address you want altered, and the second is the data you want
to put in. POKing into ROM has no effect of course.

1

CHAPTER 1 Memory, Bits and Bytes

Hex and Binary

Most of us have ten fingers so we all count in base 10. It would
be much more useful if we all had 16 fingers for computer work, as
base 16, or hexadecimal as it is known, is a very common way of
expressing numbers when programming in machine code. As we have
only 10 digits, to denote numbers between 10 and 15, we use the
first six letters of the alphabet.

Thus, the number 12 decimal is C in hex. The way of denoting hex
numbers varies on different machines, but on the QL the usual way
is by preceding them with a dollar sign, so 12 is $0C. With
numbers greater than 15, we use extra digits, like we do with
numbers greater than 9 in decimal, so the number 30 is $1E (as
30=1*16+14), and so on, for up to eight digits.

There are two reasons for using hex. The first is that it is much
more concise for bigger numbers — For example: the number 524288
is rather unwieldy compared with the hex version of $80000. The
other reason is that it is easy to convert between hexadecimal and
another base useful for computing — binary.

Binary

Binary is used frequently in computing and is number base 2. Thus
you can have only the digits 0 and 1 in a binary number. For a
byte, which ranges from 0 to 255 decimal, the binary equivalent
ranges from 0 to 11111111. Each binary digit counts a power of
two, so the rightmost digit is the 1s column, the next one the 2s,
the next the 4s, and so on. So, to convert the decimal 30 into
binary, we need to write it as a sum of powers of two, which works
out to be 16+8+4+2, giving a binary of 11110. It is usual for
binary digits to be written in multiples of eight, so 30 decimal
is equivalent to 00011110 binary. Each binary digit is known as a
bit, and a byte has eight bits. The bits themselves are numbered,
starting at 0 for the rightmost, and going up. This can be made a
little clearer by a diagram:

Bit number 7 6 5 4 3 2 1 0
Power of 2 128 64 32 16 8 4 2 1
Example: 0 0 0 1 1 1 1 0 = 30 decimal

The largest bit number is known as the most significant bit, which
is bit 7 (byte), bit 15 (word), or bit 31 (long).

Half a byte is, believe it or not, a nibble, and has four bits. To
convert between hex and binary, each nibble corresponds to a hex
digit, so in the example above the nibble 0001 corresponds to 1,
and 1110 to E.

2

CHAPTER 1 Memory, Bits and Bytes

A byte is the basic unit of storage. 1024 bytes (2 * 10) is known
as a kilobyte, denoted by K, and 1024K is known as a megabyte, or
M. The 68008 uses two other units — words, and long words.

A word is two bytes, and must always start at an even numbered
address. It can hold a value of between 0 and 65535, (=$0000 to
$FFFF).

The first byte in a word is known as the 'high byte', or most
significant byte (MSB), and contains the leftmost hex pair of
digits. The second byte is the 'lower byte', or least significant
byte (LSB), and contains the rightmost pair of digits. For
example: if the word data $1234 was stored at address 30, then
location 30 would hold $12, and location 31 would hold the $34
part of the data. (This is the opposite order to most 8 bit
processors.) SuperBASIC has two commands for handling word
quantities — there is

PEEK_ W(address)
which is equivalent* to
256* PEEK (address) + PEEK (address +1)

for reading words from memory, and there is

POKE_W address,data
which is directly equivalent to
POKE address,data DIV 256: POKE address+1,data MOD 256

for writing words into memory.

A long word is four bytes (two words) and must also always be at
an even numbered address. It can hold a value of between 0 and
4294967295 (=$00000000 to-$FFFFFFFF). The first byte holds the
most significant byte of the data (ie the leftmost two digits),
then the next most significant byte, and so on for all four bytes.
For example: if the long data $12345678 was stored at location 30,
then location 30 would hold $12, location 31 $34, location 32 $56,
and location 33 $78. There are two SuperBASIC commands for
handling long quantities:

PEEK_L address
which is equivalent* to
65536* PEEK_W/(address) + PEEK_W(address+2)

and

POKE_L address,data
which is equivalent to
POKE_W address,data DIV 65536: POKE_W address+2,data MOD 65536

3

CHAPTER 1 Memory, Bits and Bytes

(*The functions are not exactly equivalent because PEEK _W and
PEEK_L give signed results. If the value is greater than $7FFF and
$7FFFFFFF respectively then the number is two's-complemented — see
below.)

Two's-complementing and sign extension

As we have seen, the different sizes of numbers can range from 0
to 255 (byte), 65535 (word), and 4294967295 (long). However, there
is an alternative way of reading numbers, in order to get both
negative and positive results.

We shall deal with byte quantities first. If a number is said to
be held in "two's-complemented" form, this means that the number
can be positive or negative, depending on its highest bit — bit 7
in the case of bytes. If the bit is 0, or reset, then the number
is as usual. However, if bit 7 is 1, or set, then the number is
taken as negative, by subtracting 256 (in the case of bytes).
Thus, numbers stored as 0 to 127 are the same if stored as two's-
complemented, but numbers between 128 and 255 correspond to the
values of — 128 to —1 respectively (from 128-256 and 255-256).

Thus in two's-complement form, a byte can have a range of -128 to
127 inclusive.

Two's-complementing with words is similar, except the bit that
determines the sign is bit 15, and negative values are calculated
by subtracting 65536. Thus numbers from 0 to 32767 mean just that,
but numbers between 32768 and 65535 correspond to the values —
32768 to —1, respectively. Thus a two's-complement word can have a
value between —32768 to 32767.

With long words, the sign bit is bit 31, and negative values are
calculated by subtracting 2147483648 (=$80000000), giving a range
of —$80000000 to $7 FFFFFFF inclusive.

Sign-extension is when the most significant bit of data is
transferred to all the higher bits, when changing sizes. For
example: the byte $86 would be sign-extended to a word of $FF86,
and then to a long word of $FFFFFF86. Thus 'negative' numbers get
FFs added, while positive numbers get 00s. The reason for sign-
extension is to retain the same two's complement value — $86
(byte) is —122, and so are $FF86 (word), and $FFFFFFFF86 (long).
The PEEK_W and PEEK_L functions always give signed results in
SuperBASIC.

4

CHAPTER 1 Memory, Bits and Bytes

The processor

The processor in a machine is the controller of everything else.
For it to work, it must have a machine-code program to execute,
and programs are stored as numbers in the memory of the machine.
It would be extremely difficult to write machine code with just
numbers, so designers of each processor invent a way of expressing
what the processor does in combinations of words and numbers,
called mnemonics. A machine-code instruction is written by us
humans using mnemonics, then converted, either by hand or by
another program called an assembler, into the numbers that the
processor requires. The numbers corresponding to each instruction
are known as opcodes. For example: the instruction:

JMP $1234

while it probably doesn't mean much to you at the moment, means a
lot more than its opcode would, which is $4EF81234. This book is
concerned with programming the 68008 processor using mnemonics and
instructions, and the actual method for converting instructions,
that humans understand, into opcodes, that the processor
understands, will be covered later.

When writing machine code, it's usual to denote all references to
locations not by their address, such as $1234, but by a word,
known as a label, like PRINT. This has the advantage of being
easier to understand, and easier to work out. It's also common to
add text to the ends of instructions, known as comments, that
describe what the instruction does. For example: a line like

LOOP JSR PRINT print the character

is a lot clearer than the functionally equivalent JSR $1234

In the first line both LOOP and PRINT are labels, with the comment
following the first line after the instruction.

Useful SuperBASIC functions

Converting between decimal and hex can be a bit tricky at times,
so why not use SuperBASIC to do the conversions. Functions hex$
and bhex$ take a word or long word respectively in decimal and
convert it to a four or eight digit hex string, while function dec
does the reverse.

5

CHAPTER 1 Memory, Bits and Bytes

Listing 1.1: Hex-Decimal Functions

100 REMark Fuction hex$ changed to hexa$
103 REMark for Tooklkit II compatability
105 DEFine FuNction h1$(a)
110 RETurn CHR$ (40+a+7% (a))
120 END DEFine
130 DEFine FuNtion h2$(a)
140 RETurn h1$(a DIV 16) & h1$(a MOD 16)
150 END DEFine
160 DEFine FuNction hexa$(b)
170 LOCal a,h$
180 a=pos(b):IF a>32767 THEN a=a-32768
190 h$=h2$(a DIV 256) & h2$(a MOD 256)
200 IF pos(b)>32767 THEN h$(1)=h1$(h1$(1)+8)
210 RETurn h$
220 END DEFine
230 DEFine FuNction bhex$(a)
240 LOCal h1,h2
250 h1=INT(a/65536):h2=a-65536*h1
260 RETurn hexa$(h1)&hexa$(h2)
270 END DEFine
280 DEFine FuNction pos(a)
290 IF a<0 THEN RETurn 65536+a: ELSE RETurn a
300 END DEFine
310 DEFine FuNction dec(a$)
320 do_dec(a$) :RETurn dd
330 END DEFine
340 DEFine FROCedure do_dec(a$)
350 LOCal s,t,q
360 t=0: q=LEN(a$)
370 s=CODE(a$(q))-48: IF s>22 THEN s=s-32
380 IF s>9 THEN s=s-7
390 t=t+s*16^(LEN(a$)-q
400 q=q-1: IF q>0 THEN GO TO 370
410 dd=t
420 RETurn
423 END DEFine

(These functions are not the neatest way of converting between the
bases. They have been written in such a way as to work on early
bug-ridden versions of the QL, as more concise versions can crash
such machines.)

6

CHAPTER 2 Inside the QL

Inside your QL is a lot of the latest in electronic technology.
There are many components to it, but the main ones that interest us
are shown in Figure 2.1.

Figure 2.1: QL Main Components

The main microprocessor is the Motorola MC68008, which works in
conjunction with a slave processor, an Intel 8049. This book is
mainly concerned with the former, though the use of the latter is
covered in Chapter 7. The 68008 is a direct development from the
MC68000, which was first introduced in 1979 in limited quantities.
The -8 version is very similar to its predecessor, and is almost
completely software-compatible.

The main differences between them are the number of data and
address lines — the 68000 has 16 data and 24 address lines, and can
address 16 Mbytes, while the -8 has only 8 data and 20 address
lines, and can address 1 Mbyte. The difference in data lines had
the effect that the 8 runs rather slower than its counterpart. The
68008 is a very new device, first appearing at the end of 1983. The
Sinclair QL is the first computer to use the processor.

7

CHAPTER 2 Inside the QL

31 0 31 0
A0 D0
A1 D1
A2 D2
A3 D3
A4 D4
A5 D5
A6 D6
A7 D7

15 0
alternate A7 SR

Program Counter

Figure 2.2: 68008 Register Set.

A simplified functional diagram of the 68008 is shown in Figure
2.2.

Internally there are eight address registers, named from A0 to A7,
a special alternate A7 register, eight data registers, named DO to
D7, program counter, and status register. All but the latter are
32 bit registers, while the status register (known as the SR) is
16 bit. Address register A7 is a special case, as it is also the
stack pointer register. The 68008 can run in two different states,
supervisor and user modes. Each mode requires its own stack
pointer, hence the existence of two A7s. The current mode, and A7
usage, is defined by a bit in the status register. The 'uses of
all the bits is shown in Figure 2.3.

system byte User byte

15 13 10 9 8 4 3 2 1 0

T S I2 I1 I0 X N Z V C
 Trace-0-off
 1-on

Carry
Overlow

Condition
Codes

Supervisor – 1
 User – 0

Zero
Negative

Interrupt level Extend

Figure 2.3: Status Register Bit Usage.

8

CHAPTER 2 Inside the QL

The high byte of the status register stores important system
information, and can only be altered when in supervisor mode. Bits
control trace mode, which allows single stepping among other
things, supervisor or user mode, and the current level of
interrupts. Interrupts and using trace are covered later in
Chapter 6.

The lower byte of the status register (known as the CCR, for
Condition Control Register) contains all the condition code bits,
altered using arithmetic instructions, and tested for conditional
jumps. Further details are given in Chapter 4. Note that there are
six unused bits in the status register — these are never altered
by any instructions, so you could use them for your own purposes.
However, beware of getting into bad habits — other processors in
the 68000 series do use these extra bits, and this applies to
other non-standard techniques.

Supervisor and User modes

When the 68008 starts up, it is in supervisor mode. What happens
subsequently depends on the software that executes, and in the
case of the QL the machine soon goes into user mode. Generally
speaking, the QL is in user mode, though it can be persuaded to
temporarily go into supervisor. When in supervisor, the processor
can really do what it likes. It has access to al] the memory, and
the whole status register, so it can go into trace mode, and
change interrupt priorities. When in user mode, the machine is
restricted. The upper byte of the status register cannot be
altered, though it can be read, and certain other instructions are
privileged. This means that they cannot be executed when in user
mode, and if you try, well, various things can happen. Basically,
an exception occurs, which can trap such instructions, but I won't
go too far into this at this moment.

QL memory map

The standard QL has 128K of RAM and 48K ROM, with various other
devices in its memory map. With reference to Figure 2.4, it can be
seen that there are several areas that are defined but currently
unused, and that out of the QL's complete address range of 1
Mbyte, there are no areas that are not defined.

9

CHAPTER 2 Inside the QL

FFFFF

C0000

Peripheral
ROMs – up to
16x 16K

40000

 Expansion RAM
 up to 512K

30000

RAM

128K RAM

28000

 Screen 1

20000
 Screen 0

1C000 External I/O

18000 I/O Internal I/O

10000

0C000

 External ROM – 16K

00000

ROM Internal ROM - 48K

Figure 2.4: QL Physical Memory Map (not to scale).

10

CHAPTER 2 Inside the QL

Storing machine code

With such a large amount of RAM available, you'd think that there
would be loads of places in which you can store your own machine
code. However, if you just put it in an area that seems to be
free, sooner or later the system will use this area, wiping out
your precious code. To tell the machine that you want to reserve
some memory, you must use the RESPR function. RESPR stands for
'reserve procedure space', and should be followed by a number in
brackets. This number is the number of bytes you wish to be made
available. Unfortunately, RESPR can work differently on different
machines, so for the moment we shall reserve space for all the
routines in this book with the statement:

a=RESPR(1024)

If you do this, regardless of which QL you have, 1024 bytes of
memory will now be set aside for you. To find where they are,
simply:

PRINT a

which should be 261120 on a 128K RAM machine. A useful feature is
that if you have a parameter of 0 in RESPR, it returns the first
free location.

Thus, after reserving space, RESPR(0) always tells you where your
machine code may go. Unlike most other machines, on the QL there
is no way of deciding first where you want your machine code to go
— it will go where the system thinks it should. This means that
any code you write must either be position independent, or have a
special relocator. On older microprocessors, writing position-
independent code is a positive nightmare, but on the 68008 it is
no different to writing normal code.

Now we have a way of reserving machine code, we need a way of
entering it into the machine's RAM. As the QL has no machine-code
monitor, we shall have to write our own, in the form of a hex
loader.

Listing 2.1 below is such a program, that requires DATA statements
containing hex strings to be added from line 1000 onwards. The
length of the strings does not matter, so long as they are even
(ie complete bytes).

11

CHAPTER 2 Inside the QL

Line 9999 must remain, as it tells the program when there is no
more data.

Listing 2.1: Hex Loader

10 DEFine FuNction dc(a$)
20 IF CODE(a$)>=CODE("a") THEN a$=CHR$(CODE(a$)-32)
30 RETurn CODE(a$)-48-7*(a$>"9")
40 END DEFine
90 a$=""
100 INPUT "Start address? ";s
105 IF s<RESPR(0) OR s>=PEEK_L(163872) THEN PRINT "WARNING:not in
proper RAM": STOP
110 RESTORE 1000: READ a$
120 IF a$="" THEN Go TO 250
130 a=dc(a$(1)): IF a<0 OR a>15 THEN GO TO 200
140 b=dc(a$(2)): IF b<0 or b>15 THEN GO TO 200
150 PRINT !a$(1 TO 2);: POKE s,a*16+b
160 s=s+1
170 IF LEN(a$)<3 THEN READ a$: GO TO 120
180 a$=a$(3 TO LEN(a$))
190 GO TO 120
200 PRINT \"Data error at location ";s
210 STOP
250 PRINT \"Last bytes loaded at ";s
260 STOP
9999 DATA "": REMark end marker

Firstly you are asked for a starting address, which is checked to
make sure that it points to RAM above RESPR (PEEK_L(163872)
calculates the top of RAM +1).

When entering machine code with this loader, either programs from
this book or your own, there is an easy way to be sure that they
don't work — by forgetting to reserve any memory, so RESPR(O)
points not to free RAM, but to non-existent memory. Then, after
you think you've POKEd your program in memory and try to execute
it, the machine is very likely to fall over, losing your program.

We've now seen what is in the QL, where we can put our programs,
and how we can enter them. In the next chapter, we shall start
programming.

12

CHAPTER 3 The MOVE Instruction and Addressing Modes

The most often used instruction in the 68008's set is MOVE. It is a
general 'load' instruction, and has two parameters — the source,
and the destination. What it does is to take the source, whatever
this is, and move it into the destination. This may sound
horrendously complicated at first, but it isn't. Think of it as a
LET statement in BASIC. The statement LET D0=0 has its equivalent
of MOVE #0,D0. What it means exactly is 'Move 0 to register DO'.
The hash is an important part of the instruction, as we shall see
later. Our MOVE instruction above is not quite complete, as with
all MOVEs you must specify the size of the instruction — whether
you are MOVing a byte, a word, or a long word. You distinguish
between them by following the MOVE with a full stop, then B, W or
L, respectively. So if we want all of register DO to be zero, the
complete instruction is:

MOVE.L #0,D0

Of course 0 is not the only number that can be moved to D0 — any
number from 0 up to $FF (for byte operations), or $FFFF (for word),
or even $FFFFFFFF (for long word operations). There are literally
thousands of different types of MOVEs, but once you know a few, the
others follow — honestly! For example: a similar instruction to
that above is:

MOVE.L #0,A0

which puts zero in register A0, in exactly the same way as that
above. There is a slight restriction when moving data to an address
register — only word and long word sized moves are allowed — byte-
sized is not. In normal programming, this is not really a problem,
as byte-sized moves are seldom required.

The # in the instructions above means 'immediate addressing': think
of it as 'immediately putting the data' into the register.
Immediate addressing is the simplest of the twelve different
addressing modes — this may seem a lot to those of you with
experience of 8 bit chips, and is one of the main reasons behind
the power of the 68000 series.

Direct addressing

The next addressing mode we shall look at is direct addressing.
It's a nice, simple one, and is used for transferring data directly
from a register. For example:

MOVE.L D3,D1

transfers whatever was in D3 into D1 (think of the comma as TO). D3
itself is not altered, so its BASIC equivalent would be LET D1=D3.

13

CHAPTER 3 The MOVE Instruction and Addressing Modes

Direct addressing can also be used with address registers, so
'MOVE.L A3,A0' is valid, and so is 'MOVE.L A3,D0' and 'MOVE.L
D0,A3'

The latter two show how you can transfer between registers
regardless of type, though once again you cannot MOVE byte-sizes
to or from an address register directly, so 'MOVE.B D3,A0' is not
valid.

Indirect addressing

This addressing mode can only be used with address registers, and
acts like a PEEK in BASIC. For example:

MOVE.L (A0),D0

means 'move the data from location A0 to register DO', or in
BASIC:

LET D0=PEEK_L(A0)

The brackets around A0 distinguish the mode from the direct mode.
To compare the two, let's have a look at two apparently similar
programs, and what each one does:

MOVE.L #$28000,A0 MOVE.L #$28000,A0
MOVE.L A0,D0 MOVE.L (A0),D0

The first instruction is the same in both programs, and puts the
value of 28000 hex into register A0. The next lines look similar,
but the important difference is the brackets on the one on the
right. On the left, direct addressing is used to transfer the
contents of A0, which we know to be $28000, into reigster DO. On
the right, it's the contents of location $28000 that gets put in
register DO. I hope you can now see the difference between direct
and indirect addressing — if not, have another read.

Post-increment addressing

This one is a natural progression from indirect addressing. It
simply increments the address register after the read, by a value
depending on the sige of the operation. For example:

MOVE.L (A0)+,D0

does the following: it reads the long word at location A0, puts it
into D0, then increments A0. As this is a long operation, A0 gets
4 added to it. If this were a word or byte operation, it would get
incremented by 2 or 1 respectively.

14

CHAPTER 3 The MOVE Instruction and Addressing Modes

The mode is shown by putting the address register within brackets,
followed by a plus sign. It is extremely useful in many
applications, including searching, filling and moving. The only 8
bit processors with this ability are also from Motorola, including
the 6809.

Pre-decrement addressing

As you may gather from the name, this is the opposite to post-
increment addressing. It is similar to indirect addressing, but
the register gets decremented by a value before the memory read.
So:

MOVE.L —(A0),D0

would decrease AQ by four (as this is long), then read location A0
and put it in D0. As with its partner, word and byte operations
produce decrements by 2 and 1, respectively. It is important to
remember that the register gets decreased before the read, and not
after as with post-increment. The clue to which one does what is
in their names. The mnemonics used may help too — the minus sign
comes before the brackets around the register.

Indirect with displacement

OK, I know it's a mouthful, but you don't have to remember these
official titles — as long as you remember the mnemonics, and what
they do, the names aren't that important. Anyway, this is another
variation on indirect addressing, this time with a number tagged
on. For example:

MOVE.L 4(A0),D0

looks at location A0+4, and places its contents in D0.

The number that precedes the first bracket is the displacement,
and gets added to the value of A0 before the memory is read.

Note that it doesn't actually alter A0, the result of the addition
being stored temporarily. The value of the displacement can take
up to 16 bits, i.e. from 0->65535 (or 0->$FFFF).

However, it is important to note that the displacement is taken as
sign-extended, which means that 0332767 means just that, while
32768->65535 means —32768 to —1, respectively. That is, if the
displacement is greater than 32767, then you have to subtract
65536 from it. This allows negative displacements,

so that: MOVE.L 65534(A0),D0 is equivalent to: MOVE.L —2(A0),D0

15

CHAPTER 3 The MOVE Instruction and Addressing Modes

which has a BASIC equivalent of LET DO=PEEK_L(A0—2). This may
seem quite complicated at first, but you should soon see the
principle. If you don't, have another read, because the next one
is a bit trickier!

Indirect with index

Most of the more complicated addressing modes are developments of
simpler ones, and this is no exception. It is basically like the
previous mode, but with the addition (literally) of another
register. So, the instruction:

MOVE.L 8(A0,D1),D0

does rather a lot. Firstly, it adds A0, D1 and the displacement —
8 in this case — all together, and stores the result temporarily.
Then, it looks at that memory location, reads what's there, and
puts it in D0 — wow! It's not quite that simple, though, as the
displacement may only be eight bits, again sign-extended, giving a
range of —128 to 127. In addition, the index register, D0 in this
case, can be taken as word or long in size, and is sign-extended
appropriately. Although I have used a data register as the index
above, you can also use an address register, though in both cases
you should specify its size, by following it with a .W or .L to
suit. Thus:

MOVE.L 4(A0,A2.W),D0

has a near BASIC equivalent of LET DO=PEEK_L(A0+A2+4). I say
'near' because it doesn't take account of any sign-extending on
the displacement or index register.

Having covered nearly all the most complex modes, let's have a
look at a couple of simpler ones — the absolute addressing modes.

Absolute addressing

There are two modes of absolute addressing — short and long. Short
addressing uses a word as an address, while long addressing uses a
long word. The instruction:

MOVE.L $18000,D0

is a long absolute address, as $18000 must be a long word. What
the instruction does is simply to read the contents of location
18000 hex, and place them in DO. In other words, it is equivalent
to the BASIC LET D0=PEEK_L($18000).

16

CHAPTER 3 The MOVE Instruction and Addressing Modes

The short form is similar, but the address has to be a word, which
is sign-extended so that O-$7FFF are as you would expect, but
$8000-$FFFF refer to addresses $F8000 to $FFFFF, respectively.
Unfortunately, the advantages of short addressing on the 68000
series are not really relevant to the QL, as it is very seldom
indeed that you would want to examine either of these areas in
this way. This is because the QL memory map does not really follow
the norm for 68000 series machines.

The short addressing modes were intended to access ROM routines at
the bottom of the map and I/O devices at the top, but the latter
are not there on the QL, while it is bad practice to do the
former.

Program counter addressing modes

A very neat feature of the 68008 is its ability to run position
independent code very easily. This is inherently difficult on most
8 bit chips, with the exception again being the Motorola family.

The 68008 accomplishes this by having two special addressing
modes, similar to those mentioned previously, but differing by
being totally relocatable. This is done by storing not absolute
addresses in the instruction, but just the displacement from the
current instruction to the desired address. Thus it is possible to
write programs without knowing where in the memory map they will
go, as they will function anywhere.

Both PC modes allow a 16 bit sign-extended displacement, allowing
references forward $7FFF bytes, and backwards $8000 bytes — this
is enough for most software. Indeed, most of the 48K ROM in the QL
is totally position independent, apparently for speed and memory
reasons.

There are disadvantages to PC modes though — they take longer to
work out if you are hand assembling, and there are also limits on
when they can be used, sometimes forcing you to use an extra
instruction to do an intermediate step.

17

CHAPTER 3 The MOVE Instruction and Addressing Modes

Program counter with displacement

This is the simplest, and is similar to absolute long addressing,
but is position independent. It is denoted in the mnemonic by
following the address with (PC), thus:

MOVE.L LABEL(PC),D0

is functionally equivalent to:

MOVE.L LABEL,D0

but position independent. It will only be allowed if LABEL is not
further than 32767 bytes away from the instruction.

Program counter with index

This is vaguely similar to indirect with index, but with less
parameters. For example:

MOVE.L TABLE(PC,D1.W),D0

will read the memory location TABLE+D1, and place the result in
D0.

As is usual for index registers, D1 in this case is sign-extended,
and could be replaced by an address register, and be either word
or long word in size.

Source and destination

In all of the above examples, the address mode under examination
has been the source in the MOVE instruction, while the destination
has been either a data or address register. This has been done for
simplicity only, as the 68008 allows a large amount of mixing of
the modes, and most of those above can also be used as
destinations in MOVEs. The difference is that, instead of memory
being read, it is written to.

18

CHAPTER 3 The MOVE Instruction and Addressing Modes

This is best illustrated by example:

Mode Example BASIC version
Indirect MOVE.L D0,(A0) POKE_L (A0),D0

Post increment MOVE.L D0,(A0)+ POKE_L (A0),D0: A0=A0+4

Pre decrement MOVE.L DO,-(A0) A0=A0—4: POKE_L (A0),D0

Indirect with
displacement

MOVE.L D0,8(A0) POKE_L (A0+8),D0

Indirect with
index

MOVE.L DO,2(A0,(D1.W),D0 POKE_L (A0+D1+2),D0

Absolute MOVE.L D0,$28000 POKE_L ($28000),D0

As you may notice, there are a few missing from the above —
firstly, immediate addressing. That's because it doesn't make
sense to try something like MOVE.L A0,#$28000 as you can't move
anything to immediate data. The others missing are the two PC
addressing modes, and they are missing because the 68008 hardware
invisibly distinguishes between data and program, and it doesn't
like to allow the alteration of program area. This is an
unfortunate restriction, and is one of the reasons why extra
instructions are sometimes needed when position independent code
is being written.

19

CHAPTER 3 The MOVE Instruction and Addressing Modes

Up to now, all the MOVEs covered have been to or from a register,
and users of other processors may not be surprised by this.
However, an important feature of MOVE is its ability to transfer
data directly from memory to memory, without having to go via any
other registers. For example, suppose you want to copy the word
data from the location pointed to by A0, into the location
A2+D1+6. One way of doing it is like this:

MOVE.W (A0),D0
MOVE.W D0,6(A2,D1.L)

It uses register DO as a temporary place to store the result, and
works perfectly well. However, if you want a bit more speed, and
you don't want to use another register, you can combine the two by
doing:

MOVE.W (A0),6(A2,D1.L)

In fact, you can have any addressing mode as the source, and most
addressing modes as destination, with any combination you like.
The limits described above regarding destination addresses still
apply though.

It is important to remember that all word and long word memory
references are to even numbered addresses — if they are not, dire
things will happen. (Later we shall see how to detect such an
occurrence.) Also worth remembering is that an address register
cannot directly be used as a source or destination for a byte-
sized transfer.

Word and byte-size accesses

All of the examples so far have been of long-sized MOVEs — you may
be wondering what happens if you use word or byte-sizes. Well, the
answer is, it depends on the destination of the MOVE. If the
destination is an address register, then word-sized data will get
sign-extended to 32 bits before going into the register. If it is
a data register, only the lower 8 or 16 bits will be affected by
the instruction, depending if it is byte or word. The remaining
bits will remain unchanged. If the destination is a memory
location, then again only the appropriate number of bits will be
affected.

20

CHAPTER 3 The MOVE Instruction and Addressing Modes

The first program

If you're itching to try some 68008 code, here is the first
listing. Before explaining it, it's worth pointing out a few
points about machine code on the QL. It is executed with the CALL
command, followed by the address of the routine. You should be
careful with a couple of the registers — in particular, leave A6
alone, as it is an important pointer for the system,and A7,the
user stack pointer, should always be back at its original value
when you have finished. To leave your machine code and get back to
BASIC, the RTS instruction is used. This stands for 'Return from
subroutine', and is more fully explained in a short while. Before
doing the RTS though, you should always zero register D0. If you
do not, you will get an error message on return to BASIC, the
message depending on the value of D0.

Anyway, back to the program. It's not amazingly impressive, as it
doesn't do very much, but it does serve its purpose — it's the
first machine code you have done, and here it is:

Listing 3.1: First Program

4208 CLR.L D0 zero D0
4E75 RTS and back to BASIC

To enter it, type in the hex pairs shown down the lefthand side,
using the hex loader, and to test it tty CALL RESPR(O). If all is
well; you should simply get the cursor back. If not, you've
managed somehow to get a four-byte program wrong!

Now is probably the best time to explain a few things about
opcodes in general. It is imperative that every instruction starts
at an even-numbered address. Be particularly wary of this if your
program includes blocks of data in byte chunks. In addition, every
instruction is an even number of bytes in length, with a minimum
of two, and a maximum of ten. You will seldom find your own
programs needing instructions of over six bytes in length though.

You may well be wondering how I worked out the hex for the
program. There are two ways of doing it — the easy way, and the
hard way. The hard way is to do it by hand, by using the codes in
Chapter 8. It's not too difficult for small programs, but
alterations can be difficult and it is prone to error. The easy
way is to use an assembler, though at the time of writing none is
available for the QL. I must admit, most of the programs in this
book I did using an assembler, though not on the QL itself — it
was done on another machine, and the bytes downloaded via the
RS232 port. I didn't have the assembler originally, though, so I
am used to hand-coding, and I sympathise with those of you without

21

CHAPTER 3 The MOVE Instruction and Addressing Modes

an assembler. Even so, you can learn an awful lot more by doing it
the hard way. If you've done it for other processors, and thought
it was quite easy, you will have a shock when you start on the
68008, particularly regarding the number of bytes used. However,
as with most things, you can soon get used to it, and your speed
will usually increase.

22

CHAPTER 3 The MOVE Instruction and Addressing Modes

The stack pointer — A7

At this point it's worth having a look at the way the 68008 stack
works. In fact, there are two stacks, one used when in user mode,
and the other when in supervisor mode. The stack pointer is
address register A7, which means that there are actually two
register A7s in the processor. When you're in user mode, which is
most of the time, you can only get to the user type of A7. If
you're in supervisor, though, you can access both of them. For the
moment, let's stick to user mode.

Where is the user stack on the QL? Well, it depends, but after a
CALL it is somewhere high in memory, just below RESPR(Q). As long
as you don't have your 128K machine totally full, you should never
run out of stack space. Like many other processor's stacks, the
68008's is 'upside down'. This means that the bottom of the stack
is at a higher address than the top! Thus, when you put something
on the stack, A7 decreases, and when you remove something, it
increases. The value of A7 always points to the last item on the
stack (always the most significant byte) which makes it very easy
to manipulate it using pre-decrement and post-increment
addressing. For example: if in a program you want to save the
value of D1 on the stack before you do an operation, and
afterwards you want to get it back, you can do this by:

MOVE.L D1,-(A7) puts it on the stack
....... do whatever

.......
MOVE.L (A7)+,D1 then get it back

The main use for the stack is holding return addresses of
subroutines, but we'll cover this later. Finally, a word of
warning — it's best not to try a byte-sized operation on the
stack. Although it's perfectly legal to do so (so long as it
doesn't refer directly to an address register) the results will
not be as expected, as it will be converted to a word operation.
If the value of A7 were to become odd, it would be very dangerous,
as if the system tries to do a word or long word access
subsequently using A7, such as a subroutine call or interrupt, the
processor will literally stop, and your program will be lost.
Therefore, as a golden rule — never do byte operations on the
stack pointer.

23

CHAPTER 3 The MOVE Instruction and Addressing Modes

Other sorts of MOVEs

There are a few other types of MOVE instruction, with widely
varying uses. There are MOVEs for the condition codes, status
register, user stack pointer, and the specialist instructions
MOVEM, MOVEP, MOVEQ and MOVEA. I shall now cover some of these,
but the remainder I shall leave for Chapter 8.

MOVEA stands for Move Address, and is the same as a normal MOVE,
but with the destination being an address register. It is
officially separate from the MOVE instruction, but it only
confuses the matter, so you can safely ignore it. All 68000
assemblers seen so far don't require the extra A, and I don't
expect any to.

MOVEQ stands for Move Quick, and is a faster (and less memory-
consuming) way of doing MOVE.L #??,D0. The immediate data can be
up to eight bits in length, sign-extended to a full 32 bits,
giving a range of 0-127 and $FFFFFF80 to $FFFFFFFF.

For example:

MOVEQ# 12,D0

puts the long value of 12 into register D0.

Note that a size isn't needed, as it is always taken to be long,
and that there is no quick instruction for address registers.

MOVEM stands for Move Multiple, and is a fast and easy way of
putting any number of registers into or out of memory. It is
particularly useful for saving and restoring registers on the
stack, and this is undoubtedly the most popular use of the
instruction. For example: to save the registers D0 to D4, A0 to A3
and A6 on the stack the instruction would be:

MOVEM.L D0-4/A0-3/A6,-(A7)

Note how the register list is specified — consecutive registers
are separated by dashes, while others are separated with slashes.
To save items on the stack, A7 is used in pre-decrement mode, but
many other addressing modes can be used as the destination. For
exact details on which ones are allowed, see Chapter 8.

To restore registers from the stack, post-increment addressing
with A7 is used, and to restore the registers above the
instruction would be:

MOVEM.L (A7)+,D0-4/A0-3/A6

24

CHAPTER 3 The MOVE Instruction and Addressing Modes

The order of the registers in the list is not important, as the
actual order in which they are stacked and unstacked is determined
by the processor.

MOVE with status register

To transfer the 16 bit status register to or from another register
or memory, simply put SR in either the source or destination. It
is always a word instruction, due to the size of the SR. Beware
though — MOVing anything TO the SR can only be done when in
supervisor mode.

The 8 bit condition code register (ie the low byte of the SR) can
also be specified in either the source or destination using CCR,
in either user or supervisor mode. Despite its size, all such
MOVEs are word-sized too, but only the lower byte is actually
used.

25

CHAPTER 4 Condition Codes, Branching and Arithmetic

Although MOVing data about is useful, it's not really much good on
its own. It is a bit like programming in SuperBASIC using just LET,
without GOTO, GOSUB, IFs and DEFs, and without any maths functions
at all.

In this chapter we'll cover the condition codes, branches, jumps,
and subroutines. Towards the end, we'll also come across the
various arithmetic operations.

The condition codes

The condition codes are stored in the lowest five bits of the
status register, and cover five types of condition, namely X
(extend), N (negative), Z (zero), V (overflow), and C (carry). I'll
deal with these one by one, but not in that order. Firstly let's
look at an instruction that is one of the most common that alters
them — subtract.

The SUB instruction

This stands for subtract, and is used for subtraction involving
data registers. There are several forms, but let's start by looking
at the instruction

SUB.L #8,D0

Notice that, as with MOVE, a size has to be specified, and in this
case it is long. What this means is 'subtract 8 from the contents
of DO', ie do the calculation D0=D0—8. The instruction doesn't just
do the subtraction, but it looks at the result and alters the
condition codes suitably. There are five condition codes, and we'll
deal with each of them in turn, starting with the easiest.

Z — Zero flag

This is the simplest condition, and is self-explanatory. If the
result is zero, then this condition flag is set, else it is reset.
Thus, in the above example, the Z flag will be set only if DO
equalled 8 originally — if it equalled anything else, it will be
reset.

C — Carry flag

The carry flag is set if the subtraction 'carries through zero'.
Thus, if D0 was 7, and had 8 subtracted from it, the result would
be —1, and the carry generated because the result does 'carry
through zero'. If it was between 8 and 0 inclusive, no carry would
be generated.

26

CHAPTER 4 Condition Codes, Branching and Arithmetic

N — Negative flag

This flag is set if the result is 'negative'. As we are talking
about two's-complemented numbers, negative means if the most
significant bit is set.

So for long operations, a result is negative if bit 31 is set,
else it is positive.

For word results, bit 15 determines its sign, and byte results use
bit 7 as the sign bit. Thus in the above example, the N bit will
be set if the result has bit 31 set, ie lies in the range $F
FFFFFFF to $80000000 inclusive. So, if D0 was 10, the result of
the subtraction would be —2 which is SEFFFFEFE. hich is negative,
so N would be set.

V — Overflow flag

The overflow flag is set after an operation if the result is 'too
big' for the specified size, and will be set if the sign changes
after a calculation when it shouldn't.

For example: if you did SUB.B #8,D0 and D0 was originally —125,
the proper answer would be — 133, but this is too big for 8 bits,
and the result would end up as 123, which is positive. As the sign
changed when it shouldn't have, an overflow would be generated.

X — Extend flag

This is effected by certain operations only, and is set the same
as the carry flag. It is a 'special' carry flag, used in multi-
precision operations, such as floating point arithmetic. It is set
to the same state as the carry flag by a Subtract.

The previous example used a long-sized subtract — if word or byte
sizes are used, only the relevant part of the operands is read and
altered so

SUB.B #9,D0

would set the Z flag if D0=9, or if the least significant byte is
D0, so it would also be set if D0=$1009, or $F1234E09 for that
matter.

27

CHAPTER 4 Condition Codes, Branching and Arithmetic

Branches

No, this has nothing to do with trees. A branch is a type of jump,
like a GOTO in BASIC. There are no less than 15 different branch
instructions, referred to generally as Bcc (for Branch on
Condition Code). The simplest is BRA, which stands for Branch
Always, and should be followed by a program label.

When executed, it means 'transfers control to whichever location
the label is', so an instruction:

BRA START

would cause a jump to whatever location START is. There is a
restriction on all branches though — they can only be to locations
within 32767 bytes of the instruction. There are eight other
straightforward branch instructions, namely

BEQ branch if equal (Z)
BNE branch if not equal (not Z)
BCS branch if carry set (C)
BCC branch if carry clear (not C)
BMI branch if minus (N)
BPL branch if plus (not N)
BVS branch if overflow set (V)
BVC branch if overflow clear (not V)

As can be seen by the mnemonics, these eight are directly related
to the four condition codes. Note that there are no conditional
branches on the extend flag. There are some more types of
branches, but they are not really applicable to SUB, only CMP,
which we'll see later.

There is another way of branching — using the JMP instruction,
which stands for Jump. It can be followed not just by an address,
like Bcc, but by several different addressing modes, though its
use in your own programs is limited on the QL as it is not
normally position independent.

Other types of SUB

The usual SUB instruction has one of two general forms — either

SUB (address),Dx

or

SUB Dx, (address)

28

CHAPTER 4 Condition Codes, Branching and Arithmetic

The first type includes the above examples, and subtracts the
contents of (address) from the data register. The second type does
a similar subtraction, but the other way round, in other words it
subtracts the value of the data register from the contents of the
address, then puts the result back in the address. To help
remember which is which, think of the comma as 'from'.

Here are some examples, with their BASIC equivalents:

SUB.B (A1),D1 D1=D1-PEEK(A1)
SUB.L $28000,D4 D4=D4—PEEK_L($28000)
SUB.W D4,6(Al1) POKE_W A1+6, PEEK_W(A1+6)—D4

Another type of subtraction is SUBA, for subtracting values from
address registers. It has the general form:

SUBA (address), Ax

This cannot be byte-sized, and there is no equivalent_for SUB Ax,
(address), though. There are other differences too. The condition
codes are not altered a scrap by SUBA and, with a word-sized SUBA,
both parameters are sign-extended to 32 bits. Another type of
subtraction is SUBI, for Subtract Immediate, and it has the
general form:

SUBI #(data),(address)

It subtracts the immediate data from the contents of the address,
as you
would expect. The final form of SUB is SUBQ, for Subtract Quick,
of the
form

SUBOQ # (data), (address)

It is similar to SUBI, but very much faster and less memory-
consuming. The data can only be from 1 to 8 inclusive, though. The
way an instruction, like SUB, can have different forms is repeated
for several other instructions, and a good assembler should
automatically distinguish between them.

29

CHAPTER 4 Condition Codes, Branching and Arithmetic

The CMP instruction

This stands for 'compare', and is used, not surprisingly, for
comparing things with data registers. It has the general form:

CMP (address),Dn

where (address) can be any of the modes described in the previous
chapter, without restriction. There are many different types of
CMP and, like MOVE, it has to have a size — byte, word or long,
denoted by the usual .B, .W or .L following the CMP.

For example: the instruction

CMP.L#8,D0

'compares' 8 with DO. What the processor does is to subtract the
(address) from the data register, but not store the result
anywhere.

Although the result is not stored, the values of the condition
code register are affected, depending on the result of the
subtraction. So, with the above instruction, the processor does
the subtraction

'contents of D0'—8

Other compare instructions

The normal CMP instruction compares a parameter with a data
register. There is a similar instruction CMPA, which compares a
parameter with an address register. Note that CMPA cannot have
byte-sized operations, and that word-sized CMPAs are sign-extended
to 32 bits before the operation.

There is another compare instruction, namely CMPI, which stands
for 'compare immediate'. It has the general form

CMPI #data,(address)

and can be byte, word or long in size. The size of the immediate
data is always the same as the size of the instruction, (address)
can be most of the different addressing modes, with the exceptions
of address register direct, both PC modes, and immediate mode.
Thus these are invalid:

CMPI.L#5,A0 can be replaced by CMPA.L#5,A0
CMPI.L#7,TYPE(PC)
CMPI.L #9,#6 doesn't make sense!

30

CHAPTER 4 Condition Codes, Branching and Arithmetic

More branching

As well as the conditions described previously, there are some
additional ones usually only useful after a CMP instruction. They
do not act directly on each condition code bit, but use
combinations to produce useful extra conditions. Firstly, there
are two that use combinations of the carry and zero flag, namely

BHI branch if higher
BLS branch if lower or same

So, after the instruction

CMP.B #20,D0

a BHI would be executed if D0 was Higher than 20, ie 21 to 255
inclusive, and a BLS executed if it was Lower or the Same, ie 0 to
20 inclusive.

As well as these conditions, there are six others, which work on
signed values:

BGT branch if greater than
BGE branch if greater than or equal to
BLT branch if less than
BLE branch if less than or equal to

These do not use single bits of the condition code register, or
even pairs, but combinations of the N, V and Z flags, to produce
these extra conditions. Don't confuse 'less than' with 'lower' —
the former takes into account the signs of the operands, while the
latter takes absolute values.

An example — converting to ASCII

It is often necessary to convert a number in a register, ranging
from 0 to 15, into an ASCII digit, from 0 to F. The problem is
made clearer by examining the ASCII codes corresponding to each
possible value:

Number 0 1 2 3 4 5 6 7 8
Symbol 0 1 2 3 4 5 6 7 8
ASCII 48 49 50 51 52 53 54 55 56

Number 9 10 11 12 13 14 15
Symbol 9 A B C D E F
ASCII 57 65 66 67 68 69 70

31

CHAPTER 4 Condition Codes, Branching and Arithmetic

The conversion looks easy up to 9 — simply add 48 on to the
number.
However, after 9 there is a jump in the ASCII equivalent of 7,
then it gets back into step. What's required is thus:

If the number is >9 then add 7 to it
Add 48 (=ASCII for 0)

To code this in 68008, it has to be decided which register should
hold the number. For convenience I chose to use D1 (choosing an
address register would make life very much more difficult — try it
if you like). The section of code to do the above turns out to be

CMP.B #9,D1
BLS DONTADD
ADDQ.B #7,D1

DONTADD ADD.B #"0",D1

Do you see the way the BLS works out whether or not to add the
extra 7?

The 'add 7' is skipped over if D1 is less than or the same as 9.

This is not a complete piece of code on its own, so ''ve given no
hex to enter into the QL. It is used in a short while though, to
print out numbers in hex.

How they are calculated

Don't read this unless you want to, but I've included it for
reference.

Don't bother even thinking of learning this — it would be very
difficult, and in any case there is absolutely no point. The table
shows just what combinations of condition codes produce the extra
conditions.

Condition
HI C=0 AND Z=0
LS C=1 OR Z=1
GT (N=1 AND V=1 AND Z=0) OR (N=0 AND V=0 AND Z=0)
GE (N=1 AND V=1) OR (N=0 AND V=0)
LT (N=1 AND V=0) OR (N=0 AND V=1)
LE (Z=1) OR (N=1 AND V=0) OR (N=0 AND V=1)

32

CHAPTER 4 Condition Codes, Branching and Arithmetic

Looping using DBcc

This is a very useful instruction for creating loops, using a data
register as acounter. The 'cc' refers to a condition, and it has
to be followed by a data register, then a label. The conditions
allowed are the 14 described previously, together with two
additional instructions — T for True, and F for False. The most
common form of the instruction is

DBF D0,LOOP

What this means is 'decrement D0 and branch until False or until
D0=-1'. As the condition false can never be met, this translates
to 'decrement D0 and branch until D0=-1', so it is ideal for doing
something a set number of times. As the loop finishes when the
counter reaches —1, the initial value of the counter should be one
less than the number of times round the loop.

As an example, there follows a program that scrolls the screen up
one line. To do this, the section of memory from $20080 to $27FFF
has to be moved back in memory $80 bytes, and DBF is ideal for
this.

Listing 4.1: Screen Scroll

303C7F7F MOVE.W #7F7F,D0 set count
2077C002 MOVE.L #$20080,A0 first location 208
1150FF80 LOOP MOVE.B (A0),-128(A0) move a byte
5288 ADDQ.L #1,A0 increment A0
51C8FFF8 DBF D0,LOOP do whole screen
7000 MOVEQ #0,D0 ready for BASIC
4E75 RTS RTS and exit

A total of $7F80 bytes have to be moved, so this value less 1 is
put into the count register, DO. (A word MOVE can be used, as DBcc
only decrements the lowest 16 bits of the data register, and the
test for —1 is also only done on the lower word.)

The initial value of $20080 is put into register A0, and then the
MOVE instruction does the job of moving the byte back in memory.
It uses indirect addressing for the source, and indirect
addressing with displacement for the destination. The detail of
the next instruction, ADDQ, will be explained later, but for now
just take it as read that it adds 1 to A0. The next instruction is
the DBF, which does the hard work of decrementing D0, and going to
LOOP until D0=—1, when it returns back to BASIC.

33

CHAPTER 4 Condition Codes, Branching and Arithmetic

Although False is the usual condition in DBcc instructions, any of
the others can be used. If the condition is met, then the loop
will be exited prematurely, and the data register will not be
decremented at that time. It makes no sense to use DBT, as the
condition will always be met (as it is True), and will have no
effect. (It is useful to know that some assemblers can accept DBRA
as an alternative for DBF.)

Subroutines

There are two ways of calling subroutines on the 68008, both using
a similar idea. They are JSR, for 'Jump to Subroutine', and BSR,
for 'Branch to Subroutine'. When executed, the address following
the instruction is put on the current stack, and the desired
routine jumped to.

For example:

BSR PRINT goto PRINT
REST more instructions

When the control will pass to location PRINT. When the routine
PRINT has finished, it returns to location REST with the
instruction RTS — return from subroutine. This is the same RTS we
use to get back to BASIC after a CALL, as the code you execute
with a BASIC CALL instruction is just another subroutine to the
system. What RTS does is to remove the top item from the stack,
then pass control to it.

BSR, as with the other branch instructions, can only refer to
locations within 32767 bytes.

For longer subroutine calls, JSR has to be used, which can be
followed by one of many addressing modes. The standard form is

JSR ROUTINE

where ROUTINE is expressed using absolute long addressing, but
this form is not position independent, as BSR is. Many addressing
modes can be used in a JSR instruction, though there are
limitations. For full details, see the relevant page in Chapter 8.

The CLR instruction

This stands for 'clear', and is a fast and memory-efficient way of
zeroing registers and memory. It can be byte, word or long in
size, and the number of bits zeroed correspond to the size of the
operation. Most of the addressing modes can be used to indicate
what requires zeroing, and some are shown:

34

CHAPTER 4 Condition Codes, Branching and Arithmetic

CLR.B D0 clear lowest 8 bits of register D0
CLR.W (A1) clear lowest 16 bits of location A1
CLR.L FLAG clear 32 bits at location FLAG

The forbidden addressing modes are address direct (so CLR.L A0 is
not allowed), both PC modes, and immediate mode. As has been
mentioned, register D0 must be 0 on return from BASIC, and the
fastest way to do this is with the instruction CLR.L D0 which has
an opcode of $4280.

More arithmetic

We have covered SUB and CMP, and their associated forms, and there
is one more main arithmetic instruction left — that of ADD.

The ADD instruction
There are no prizes for guessing what this one does! It adds
something to something else, the 'somethings' depending on the
type of ADD. The types, along with their general forms are:

ADD (address),Dx add contents of address to register
ADD Dx,(address) add register to contents of address
ADDA (address), Ax add contents of address to register
ADDI #(data),(address) add data to contents of address
ADDQ #(data),(address) fast form of ADDI

The range of additional types of ADD is similar to those for SUB,
with similar rules, namely:

ADDA cannot be byte-sized, does not affect the condition codes,
and always sign-extends its parameters to 32 bits; and ADDQ can
only add the values 1 to 8 inclusive. The condition codes are
affected in the usual way (except ADDA), though overflow is caused
slightly differently — an overflow in ADD is caused by a sign-
change when it shouldn't, e.g. ADD.B #8,D0 if DO= 125, the result
is 133, which is correct, but the sign has changed — it can be
thought of as — 123 as bit 7 is set.

Logical operations

There are three main logical operations — AND, OR, and Exclusive-
OR, which share a similar set of instructions.

The AND operation
A logical AND takes the bits of two numbers, then ANDs them
together. It is equivalent to the && operation in SuperBASIC.
There are two general forms of the instruction:

AND (address) ,Dx and AND Dx,(address)

35

CHAPTER 4 Condition Codes, Branching and Arithmetic

The first takes the contents of the address, logically ANDs it
with the data register, and puts the result back into the data
register. It can be any size, and only the relevant number of bits
of each parameter are used.

The second form is similar, but the result of the operation is put
back into the address. Here are some examples:

AND.B #$0F,D1 D1=D1&&15

AND.W D3,RESULT POKE_W

RESULT,PEEK_W(RESULT)&&D3

The ANDI Operation

There is another sort of AND, that of ANDI, for And Immediate. It
has the form

ANDI #(data),(address)

and its main use is to logically AND memory with immediate data.
The size of.the data matches the size of the instruction. A good
assembler will automatically decide which type of AND is
necessary.

The final two types of AND are to alter the status register:

ANDI #(data),CCR and ANDI #(data),SR

The first has a data size of eight bits, and ANDs the data with
the condition codes, placing the result back into the CCR. The
second has a data size of 16 bits, and ANDs it with the contents
of the complete status register, placing the result back in the
SR. This is a privileged instruction, because of its potential
power, and will only execute in supervisor mode.

36

CHAPTER 4 Condition Codes, Branching and Arithmetic

OR and EOR instructions

The OR instruction does a similar operation to the SuperBASIC | |
function. If either bit in the two numbers is set, then the
resultant bit will be set, else it will be reset. The EOR
instruction (for Exclusive OR) does a similar operation to | | in
SuperBASIC. If both bits in a number are 1, then the resultant bit
will be 0, or if one bit is 1, the result will be 1. There is a
similar range of these functions to AND, namely

OR (address),Dx
OR Dx,(address)
ORI # (data) ,(address)
ORI #(data),CCR
ORI #(data),SR (privileged instruction)

EOR Dx,(address)
EORI # (data), (address)
EORI #(data),CCR
EORI # (data),SR (privileged instruction)

Note that there is one missing though — EOR (address),Dx is not
permitted. You have to use an intermediate data register, e.g.

MOVE.B MASKS,D0
EOR.B D0,D2

instead of

EOR.B MASKS,D2

Shifts and rotates

The 68008 has four types of shifts and rotates, all in both
directions, and they are:

LSR logical shift right
LSL logical shift left
ASR arithmetic shift right
ASL arithmetic shift left
ROR rotate right
ROL rotate left
ROXR rotate with extend right
ROXL rotate with extend left

What they do is move all the bits of an operand in a certain
direction, though the exact details depend on the instruction
type, best illustrated by a diagram (see Figure 4.1).

37

CHAPTER 4 Condition Codes, Branching and Arithmetic

With all of these, any size can be specified, and only the
expected number of bits are affected. The way in which the number
of rotations can be specified, and what parameter is operated on,
does vary, depending on the operation. These methods are the same
for all the instructions, but in these examples ASL is used:

ASL Dx,Dy may be byte, word or long, and the number of times
register Dy is shifted depends on the contents of register Dx, MOD
64).

ASL #(fdata),Dx may be byte, word or long, the number of shifts
determined by immediate data, from 1 to 8 inclusive. Register Dx
is the operand shifted.

ASL (address) this can be word only, and the contents of the
address are only shifted once.

Arithmetic shifting is most used for signed numbers, and logical
shifting for unsigned numbers. Rotate with extend is mainly used
for high-precision maths operations.

The limit of eight on the number of operations when specified with
immediate data is a nuisance, and there are two ways of getting
around it.

You can either put the count in another data register, or do an
immediate count version a couple of times. For example: supposing
you wanted to logically shift D3 word 12 times to the right, you
could do either:

MOVE.B #12,D0
LSR.W D0,D3 using DO as the count

or

LSR.W #8,D3 maximum allowed
LSR.W #4,D3 then do again, giving a total of 12

The former method is preferable for large counts, while the latter
is useful if register usage is limited, and there is no spare data
register.

38

CHAPTER 4 Condition Codes, Branching and Arithmetic

ASL C
Aritmetic data O
shift left X

ASR C
Aritmetic data
shift right X

LSL C
Logical data O
shift left X

LSR C

Logical O data
shift right X

ROL

Rotate C data
left

ROR

Rotate data C
right

ROXL X

Rotate with data
extended left C

ROXR C

Rotate with data
extended right X

Figure 4.1: Shifts and Rotates.

39

CHAPTER 4 Condition Codes, Branching and Arithmetic

Printing in hex

As a useful exercise, there follows a program that uses many of
the instructions we've come across so far — a routine to print the
value of a register in hex, though the actual mechanics for
getting a character on the screen have not yet been covered.

Firstly, let's think about what is involved. We have to take each
nibble (four bits), starting at the most significant, convert it
to a single ASCII digit from 0 to F, print it, then do the same
for all eight nibbles, printing the complete hex value. Converting
a register value of 0 to 15 into an ASCII value of 0 to F has
already been covered, so the main parts to be done are the
'extracting the nibble', and counting for eight digits. The
complete subroutine looks like this:

Listing 4.2: Hex Printing

prints value of D1 as 8 digit hex

7007 HEX8 MOVEQ #7,D0 set count
E999 LOOP ROL.L #4,D1 rotate nibble
2F01 MOVE.L D1,-(A7) save D1 on stack
0201000F AND.B #$0F,D1 D1=0 to 15
0C010008 CMP.B #9,D1 convert to ASCII
6F02 BLE DIGIT
5E01 ADDQ #7,D1
06010030 DIGIT ADD.B #"0",D1
6108 BSR PRINT print the character
221F MOVE.L (A7)+,D1 restore D1
51C8FFE6 DBF D0,LOOP do all digits
4E75 RTS and finish

prints chr$(d1) onto screen
without corrupting any registers
(Don't worry how it does it yet)

48E7D0C0 PRINT MOVEM.L D0-1/D3/A0-1,-(A7)
20700001 MOVEA.L #$0001001,A0
0001
76FF MOVEQ #-1,D3
7005 MOVEQ #5,D0
4E43 TRAP #3
4CDF030B MOVEM.L (A7)+,D0-1/D3/A0-1
4E75 RTS end of subroutine

It starts off by assuming the register value to be printed lies in
D1.

40

CHAPTER 4 Condition Codes, Branching and Arithmetic

Register D0 is going to be the counter, so it gets initialised to
the number of digits —1, which is 7. (The minus one is necessary
because we're going to use DBF.) We then enter the loop, in which
D1 (long) is rotated left four times. To start with, this puts the
highest nibble (at bits 28-31) into the lowest four bits, and
rotates everything else in the register up one nibble. The MOVE
saves the value of D1 on the stack for later, then the AND makes
D1 hold 0 to $0F inclusive, which then gets converted to its ASCII
equivalent. (This corrupts the value of D1, which is why we saved
it previously.)

After the conversion, the BSR PRINT calls the subroutine that
sends character D1 to the screen, then D1 gets restored to its old
value, and the DBF makes sure the loop goes round eight times.
Each time, the next nibble gets rotated around into the lowest
four bits, converted and printed, until the whole number has been
printed. Don't concern yourself with PRINT for the moment — it is
fully covered in Chapter 7, but take it as read that it sends a
character to the screen, without corrupting any registers.

The subroutine itself cannot be used directly from BASIC as it
stands — it will work perfectly, but generates an error message
when it finishes, because the final value of DO will be —1. It is
intended to be called by other bits of program, so D0 is not
explicitly cleared.

It can be extended to print values in hex of 8 or 16 bit
quantities too. For 8 bit data, with two hex digits, the initial
value of DO has to be set to 1, and D1 rotated initially so what
was originally in the lowest four bits goes into the highest. For
16 bit data, DO has to be 3 to start with, and its low and high
words swapped around for the data to be in the right place. This
can be done quickly with the SWAP instruction.

41

CHAPTER 4 Condition Codes, Branching and Arithmetic

The necessary extra instructions are:

Listing 4.3: Printing 8 and 16 Bit Values

(must immediately precede Listing 4.2)

8-bit data - 2 hex digits

7001 HEX2 MOVEQ #1,D0 set count
E099 ROR.L #8,D1 rotate value
6008 BRA LOOP and print it

16-bit data - 4 hex digits

7003 HEX4 MOVEQ #3,D0 set count
4841 SWAP D1 move data
6002 BRA LOOP and print it
7007 HEX8 MOVEQ #7,D0 rest of routine

..............

..............

(The hex bytes assume that the previous routine directly follows
these instructions.) This now gives three subroutines for the
price of one. They are HEX2, for 8 bit values, HEX4, for 16 bits,
and HEX8, for 32 bits. Having done this you could always try for
something a little more adventurous — how about printing them in
decimal? (This is very tricky indeed, and the faint-hearted
shouldn't try it — anyway there's a nice QDOS routine that does it
all for you in the ROM!)

42

CHAPTER 5 Further Instructions and Passing Parameters

One of the instructions carried over from previous Motorola
processors is LEA, which stands for 'Load Effective Address'. At
first sight it seems identical to the MOVEA instruction, but there
is a subtle difference, best illustrated by this example:

MOVE.L LABEL(PC),A1 LEA LABEL(PC),A1

What the MOVE does is to read the contents of location LABEL, and
put them in register Al. The similar LEA instruction places the
value of LABEL into Al, not the contents of the location. The
difference between these two is a well-known source of confusion to
newcomers to the 68000 series, which is understandable. LEA is like
MOVE, but the value of the address is placed in the selected
address register. To get the same effect as the above LEA
instruction, you could do

MOVE.L #LABEL,A1

but there is an important difference. The LEA form, as it uses PC
mode, is position independent, whereas the MOVEA form, using direct
addressing, is not.

Probably the main use of LEA is in getting around the restriction
that prevents PC mode being used as the destination in MOVE
instructions.

For example: suppose you wanted to do

MOVE.L D3,STORAGE(PC)

which is not allowed, you could get around the restriction with

LEA STORAGE(PC),A1
MOVE.L D3,(A1)

The LEA sets A1 to the value of STORAGE (using PC mode), and then
the MOVE does the transferring of data. LEA can also be used to add
things together faster than can be done with the ADD instruction.

For example, suppose you wanted to calculate the sum of A1,A2 and 9
and put the result in A3, it could be done with

MOVE.L A1,A3 A3=Al1
ADDA.L A2,A3 A3=A1+A2
ADDA.L #9,A3 A3=A1+A2+4+9

but a much faster and neater way is by using LEA, with LEA
9(A1,A2),A3 (compare this with MOVE.L 9(A1,A2),A3, which takes the
contents of memory location (A1+A2+9) and puts it in A3).

43

CHAPTER 5 Further Instructions and Passing Parameters

LEA does differ markedly from MOVE in some respects, though.
Firstly, its size is always long, and secondly, the destination is
always an address register. There are also limits on which
addressing modes can be used with LEA. Chapter 8 lists them all,
but the most notable illegal mode is immediate data — LEA #100,A2
simply doesn't make sense. If you want to put a value of 100 into
A2, you can use either LEA #100,A2 or MOVE.L #100,A2

The NOP instruction

This is probably the simplest 68008 instruction to understand of
all. It stands for 'no operation', and does just that — nothing.
It is normally used in things like delay loops, to use up time,
and to obliterate instructions when debugging programs.

The EXG instruction

This is another easy one. It stands for 'exchange registers', and
does exactly what you would expect — it swaps the values of any
two registers (and is always long in size). For example:

EXG D3,A0

would swap the values of D3 and A0 around. Despite its simplicity,
it can get confused with two other completely different
instructions — EXT, and SWAP, so beware.

The NOT instruction

This one 'inverts' the contents of the specified address. For
example: if location $30000 contained $1F initially, after the
instruction

NOT.B $30000

it would contain the inverse of $1F, which is $E0. The inverse of
a number means that the state of all the bits are swapped, and
this can be seen by the examination of the binary forms of these
two numbers:

$1F 0001 1111
$EO 1110 0000

As well as inverting memory, it can also be used on data registers
(but not address registers), and can be any size eg

NOT.W D2

This instruction should not be confused with the next one, though.

44

CHAPTER 5 Further Instructions and Passing Parameters

The NEG instruction

This is similar to NOT, but instead of the memory or register
contents being inverted, they are two's-complemented. Thus $1F
would get changed to —$1F, which is $E1 (from 256-31). It can be
any size, so a NEG operation on a word value of 123 decimal would
give a value of 65536—123 = 65413 = $FF85. As with NOT, data
registers can be two's-complemented, but not address registers.

The SWAP instruction

Not to be confused with EXG, this swaps the high and low words of
a data register around. It is not possible to swap anything but
data registers though.

Passing parameters using CALL

A popular use of machine code on any computer is not just for
stand-alone programs, but for adding additional features and
functions to the machine's BASIC, and the QL is no exception. You
will usually find that you need to pass the values of one or more
BASIC variables on to the routine, and will possibly want values
returned by the routine. The former at least is made easy by the
way SuperBASIC does its CALL command.

As was covered in Chapter 3, CALL should be followed by the
location at which your machine code program starts. However, you
can follow the location with up to 13 numeric parameters,
separated by commas, e.g.

CALL 261120,10,34,a,r(5)

If SuperBASIC finds such parameters following a CALL, it puts the
values into the 68008 registers just prior to calling your machine
code. The order it puts the values into the registers is:

D1, D2, D3, D4, D5, D6, D7, A0, A1, A2, A3, A4, A5

The missing registers are DO, which is used as an error number,
A6, which holds an important address for SuperBASIC, and A7, which
is the user stack pointer. Each parameter can range from —
2147483649 to 2147483648 (or more clearly O-$FFFFFFFF as signed
integers). String parameters are not allowed, and attempting to
use them will crash early versions of the QL. If you specify more
than 13 parameters, the extra ones will be ignored.

45

CHAPTER 5 Further Instructions and Passing Parameters

If you want to pass just one parameter to a routine, don't choose
something silly like Al, which requires a line like

CALL location,0,0,0,0,0,0,0,0,value

which is very easy to mistype. Make life easy and use D1,
translating the above into a more manageable

CALL location,value

even if you have to add to the front of your program the
instruction

MOVEA.L D1,A1

While we are discussing CALL, there are a few other points to be
made about it. Firstly, if you're going to use A6, save its
initial value and restore it before you RTS to BASIC, else you
will crash it out. Secondly, the same rule applies to A7 —
preserve its value if you're going to use a different location for
the user stack. Also, if you go into supervisor mode, remember to
get back into user mode before returning to BASIC.

The CALL command does allow values to be passed to it, but
unfortunately doesn't allow values to return from it. The way to
do this is to reserve a suitable number of bytes at the end of
your program, and MOVE the data you want to pass back to BASIC
into it before you RTS.

Then the BASIC program can PEEK the appropriate locations to see
what the data was. As an example of this, there follows a program
that passes a short string back to BASIC, revealing which version
of QDOS is installed in the QL. It does this by using a 'trap'
instruction (traps are more fully covered in Chapters 6 and 7) to
call a QDOS routine.

Listing 5.1: Which QDOS Version

4280 CLR.L D0 get ready for the trap
4E41 TRAP #1 call QDOS
41FA0006 LEA PARAMS(PC),A0 A0=PARAMS
2082 MOVE.L D2(A0) store D2
4E75 RTS and back to BASIC
00000000 PARAMS DS 4 storage loation here

Firstly D0 is zeroed, which is necessary for this particular trap,
then the TRAP #1 instruction done. What this does is basically a
special system call to the ROM, asking it for details about the
state of the machine.

46

CHAPTER 5 Further Instructions and Passing Parameters

Various information is returned, but the type number comes back in
register D1 long, in the form of four ASCII bytes. The LEA and the
MOVE together store this value at location PARAM, and the RTS
returning to BASIC is executed. (It is not necessary to zero D0,
as the trap does it for you.) To use this, a program like this is
needed:

1000 start=?????: REMark wherever the m/c starts
1010 CALL start
1020 PRINT "The version number of this QL is"';
1030 FOR i=0 TO 3
1040 PRINT CHR$(start+12+i);
1050 END FOR i
1060 PRINT

Depending on your OL, this returns a value such as 1.02 or
similar.

47

CHAPTER 6 Exception Processing, Traps and Interrupts

A major feature of all the 68000 series processors is their
exception processing abilities. An exception is an event that
causes a special sequence to occur, usually involving a subroutine.
Unfortunately the QL firmware does not allow the full range of
exceptions, which is a pity. For this reason, I shall describe the
standard features, and also the limitations placed on each by the
QL.

The vector table

Crucial to exception processing is a 1024 byte table of vectors,
running from location $00000 to $003FF inclusive. The table
consists of 256 vectors, each taking a long word, ie four bytes.
Each vector has a number, starting from 0, so that the vector at
$00000 is number 0, the one at $00004 is number 1, and so on. The
full table is defined as laid out in Table 6.1.

It is normal practice with 68000 series machines to have RAM in
this vector area, for maximum flexibility. However, at switch-on,
RAM contents are undefined, so some simple electronics are required
to switch a ROM into this area just long enough to get the system
started properly.

To cut costs on the QL, though, this was ruled out, and it was
decided to place ROM permanently in this area. Regrettably, it was
also decided to use some of the vector table not only for vectors,
but for holding actual instructions, thus 'destroying' the vectors
at several points. It is this fact that makes many of the vectors
above 'unusable'.

General exception processing

Although there are many different types of exception, most follow
certain rules when they occur — these are:

an internal copy of the SR is made, for later use
the S bit is set, entering supervisor state
the T bit is reset, disabling trace (see later)
the interrupt bits may be altered, depending on the exception

48

CHAPTER 6 Exception Processing, Traps and Interrupts

Table 6.1 :Vector Table

Location
(hex) Decimal Number 68000 series use QL Usage
000 0 0 RESET vale of SSP same
004 4 1 RESET value of PC same
008 8 2 Bus error ignored
00C 12 3 Address error user vector
010 16 4 Illegal instruction user Vector
014 20 5 Divide by zero user vector
018 24 6 CHK instruction user vector
01C 28 7 TRAPYV instruction user vector
020 32 8 Privilege error user vector
024 36 9 Trace user vector
028 40 10 Line 1010 emulator unusable
02C 44 11 Line 1111 emulator unusable
030 48 12 Undefined unusable
034 52 13 Undefined unusable
038 56 14 68010 Format error unusable
03C 60 15 Uninitialised Interrupt unusable
040 64 16 all all
to 05F to 95 to 23 Undefined unusable
060 96 24 Spurious interrupt ignored
064 100 25 Interrupt level 1 ignored
068 104 26 Interrupt level 2 system interrupt
06C 108 27 Interrupt level 3 ignored
070 112 28 Interrupt level 4 ignored
074 116 29 Interrupt level 5 ignored
078 120 30 Interrupt level 6 ignored
07C 124 31 Interrupt level 7 user vector
080 128 32 Trap #0 QDOS call
084 129 33 Trap #1 QDOS call
088 130 34 Trap #3 QDOS call
08C 131 35 Trap #4 QDOS call
090 132 36 Trap #5 to all user
to 0BF to 191 to 47 Trap #15 vectors
0C0 192 48 all all
to 0FF to 255 to 63 Undefined unusable
100 256 64 all all
to 3FF to 1023 to 255 User Interrupt Vectors unusable

the vector number is calculated according to exception
the old value of the PC is put onto the SSP (Long)
the old value of the SR is put onto the SSP (Word)
the value of the vector is read from the table, and control
passes to it

This may seem complicated, but all the programmer has to know is
that the machine goes into supervisor mode, PC is stacked, SR is
stacked, and a jump according to the vector made. Whenever an
exception handler has finished, it returns to whatever triggered
it by doing the RTE instruction, which stands for 'return from
exception'.

49

CHAPTER 6 Exception Processing, Traps and Interrupts

What it does is remove the old value of SR from the stack, then
the old PC, and jumps to it. Having covered the table, we'll now
look at each exception in turn.

0 & 1 — RESET

After a switch-on, the 68008 is in supervisor mode, and it looks
at vectors 0 and 1 for its initial information. Vector 0 holds the
initial value of the supervisor Stack pointer, and vector | holds
the start value of the program counter. On the QL the initial SSP
is $40000 (the very top of RAM+1) while the initial PC value
varies depending on the ROM, but normally lies between $014E and
$0168, ie the bottom of the system ROM.

A reset can also occur when desired by external hardware, but this
should never happen on the QL. Note that this is the only vector
not to save PC and SR on the stack.

2 — Bus Error

This is an error determined by external hardware, and should never
occur on the QL. Its normal use is in conjunction with a device
known as a memory management unit (MMU), which can stop programs
accessing certain parts of memory that they are not entitled to.
With a bus error, four additional words are pushed on the stack in
addition to the PC and SR. The additional information (in the
order in which it is stacked) is: the instruction register; low
word of the address accessed; high word of the address; and a
special format word.

3 — Address Error

This is an error that occurs if a word or long word access is
attempted at an odd-numbered address. Such an exception on the QL
may or may not cause a system crash, but it can be re-defined by
the programmer — the method will be described later. An address
error also stacks similar additional information to a bus error.

4 — Illegal Instruction

There are many undefined opcodes in the 68008 instruction set, as
well as an instruction ILLEGAL, which has an opcode of $4AFC.
Other instructions defined as illegal are byte-sized address
register direct instructions, and attempts to use illegal
addressing modes. In particular, trying to use either PC modes in
the destination of a MOVE will force this exception. This
exception will generally cause a crash on the QL, but may be user-
defined.

50

CHAPTER 6 Exception Processing, Traps and Interrupts

5 — Divide by Zero

When using the divide instructions DIVU and DIVS, if the source
data is zero this exception will occur. It is normally ignored on
the QL, but may be user-defined.

6 — CHK Instruction

This exception is called if the register in a CHK instruction is
out of bounds. It is normally ignored on the QL, but may be user-
defined.

7 — TRAPV instruction

This exception occurs if the TRAPV instruction is executed and the
overflow (V) flag is set. It is normally ignored on the QL, but
may be user-defined.

8 — Privilege Violation

If the 68008 is in user mode, and a privileged instruction
executed, this exception will occur. It is usually ignored on the
QL, but may be user-defined. The privileged instructions are those
that alter the status register, RTE, RESET, and STOP.

9 — Trace Exception

Bit 15 of the SR is the trace bit and, if it is set, then trace
exception processing will occur. This means that after every
instruction is executed, the trace exception handler is executed.
As you may remember, during any exception the trace bit is reset,
so you don't get the exception handlers themselves being traced.
You can do many things with trace, such as single-stepping. This
lets you execute instructions one at a time, by pressing a key,
say. Trace mode can be enabled with the instruction

ORI #$8000,SR

and disabled with

ANDI #$7FFF,SR

Both these instructions are privileged. The exception is normally
ignored on the QL, but may be user-defined.

51

CHAPTER 6 Exception Processing, Traps and Interrupts

10 — Line 1010 Emulator

All opcodes with bits 12 to 15 as binary 1010 are unused, and if
executed force this exception. It is thus possible to add your own
instructions to the set, but regrettably this vector is unusable
on the QL, as it is overriden by instruction codes.

11 — Line 1111 Emulator

This is similar to the above exception, but with bits 12 to 15
equal to 1111. It too is unusable on the QL, for a similar reason.
On the 68020 processor, these instructions are interpreted by the
68881 floating point maths co-processor.

12 & 13 — Undefined

These two vectors are unassigned vectors, and reserved for future
enhancements by Motorola. Whatever the enhancements are, the
standard QL won't support them, as these vectors are unusable.

14 — 68010 Format Error

This is an exception triggerable only by the 68010 processor,
caused by an invalid format code after an exception. It is
irrelevant to the QL, and the vector is unusable anyway.

15 — Uninitialised Interrupt

This is a hardware-induced exception, which should not occur on
the QL, which is just as well, as this vector is unusable.

16 to 23 — Undefined

These are more vectors reserved for enhancements, and again
unusable on the QL.

24 — Spurious Interrupt

This is a hardware-induced exception, caused when an external
device fails to do as it should during an interrupt. On the QL, it
is ignored.

52

CHAPTER 6 Exception Processing, Traps and Interrupts

25 to 31 — Interrupt Vectors

The 68000 series processors all support seven levels of
interrupts, except the 68008 — of the seven possible levels, the
68008, and thus the QL, only supports levels 2, 5 and 7. The
current level of interrupt is determined by bits 8 through 10 of
the SR, and can vary from 0 to 7. On the QL, these values
correspond to the following allowed levels:

SR BITS 8-10 ALLOWED LEVELS
0 2,5,7
1 2,5,7
2 2,5,7
3 5,7
4 5,7
5 5,7
6 7
7 7

It follows from this that the interrupt with the lowest priority
is level 2, next is level 5, and the highest priority goes to
level 7. You may also note that level 7 interrupts can never be
disabled, and are thus equivalent to 'non-maskable interrupts' on
other processors.

The unavailable interrupt vectors, ie nos 1, 3, 4 and 6 would all
do nothing if executed on the QL. Level 2 is the main system
interrupt, and does an awful lot of things, including scanning the
keyboard, and multi- tasking. Level 5 interrupts are ignored,
while level 7 interrupts are normally ignored, but may be user-
defined. While an interrupt exception is executing, the interrupt
mask in the SR is altered so that lower priority interrupts are
inhibited.

Level 2 interrupts are triggered by the electronics within the QL,
the timing and use of which are determined by one of the custom
ULAs. Level 7 interrupts are left to be triggered by additional
hardware.

32 to 47 — Trap Vectors

There are sixteen TRAP instructions in the 68008 set, denoted by
being followed by a hash sign, then their number. They vary from
TRAP #0 through to TRAP #15, and are program-induced exceptions.
Their approximate equivalents in other processors are 'software
interrupts' on the 6809, and 'Restarts' on the Z80 and 8080. They
are really special subroutines, though with a few differences. On
the QL the first five are defined to be QDOS system calls, so that
the ROM may be changed without losing compatibility with previous

53

CHAPTER 6 Exception Processing, Traps and Interrupts

versions (so long as the traps functions aren't changed of
course). Traps 5 through 15 are normally ignored, but may be user-
defined.

So what do traps 0 through 4 do? Well, a complete description is
beyond the scope of this book, but briefly they do the following:

Trap #0 is the simplest, and switches you into supervisor mode.
There are additional rules to beware of when running programs in
supervisor mode, mainly to do with the stack. In particular, A7
points to a different area to that of the user A7, and there is
not very much spare space below it. This means that there is a
practical limit of around 64 bytes that can safely be used on the
supervisor stack. The easiest way to get back to user mode is with
the instruction:

ANDI #$DFFF,SR

Trap #1 is the 'QDOS manager trap'. It is used to control various
important machine resources, and the exact effect depends on the
value of register DO. Additional parameters may be passed and
returned in D1-D3 and A0-A3.

Trap #2 is the QDOS basic I/O trap, again using DO to determine
the operation.

Trap #3 is the QDOS trap for more complex I/O, such as screen,
colour, window and file-handling.

Trap #4 is a trap for the BASIC command interpreter that converts
passed parameters from their relative form to an absolute form.

The above information is not enough to use any of the traps except
0. If you wish to delve deeper into the delights of QDOS then I
suggest you get hold of either Sinclair's own technical
information, or a suitable independent publication (such as my
next book from Sunshine, The QDOS Companion). However, some QDOS
traps are described later.

48 to 63 — Undefined

These are more vectors that are officially reserved for future
use, and unusable on the OL. However, there are many two-byte
vectors at this point on the QL, starting from $000CO0, running on
past $00110, depend- ing on the ROM version. These are a way of
handling certain ROM routines while retaining compatibility if a
ROM changes. To use them, indirect addressing is used in a JSR
instruction, so for example if vector $CO is required, it can be
called with:

54

CHAPTER 6 Exception Processing, Traps and Interrupts

MOVE.W $0000,A0
JSR (A0)

What this does is to read the word contents of $C0 into A0, then
call the routine. The example assumes A0 does not need to pass a
parameter to the subroutine — if this is desirable then simply use
a different address register. (This is practically the only use of
absolute short addressing on the QL.)

64 to 255 — User Interrupt Vectors

These are intended for storing vectors on multiple-interrupt
systems, but the QL handles its interrupts using a linked list,
and thus has no need for these vectors. The first few are used as
word-sized vectors for the system, though.

User-definable exception vectors

As has been mentioned previously, certain QL vectors may be re-
defined, via RAM. The vectors, and their RAM numbers, are:

Ram Number Use
00 0 Address error
04 4 Illegal instruction
08 8 Division by zero
0C 12 CHK instruction
10 16 TRAPV instruction
14 20 Privilege violation
18 24 Trace vector
1C 28 Interrupt level 7
20 32 Trap #5
24 36 Trap #6
28 40 Trap #7
2C 44 Trap #8
30 48 Trap #9
34 52 Trap #10
38 56 Trap #11
3C 60 Trap #12
40 64 Trap #13
44 68 Trap #14
48 72 Trap #15

These RAM vectors are enabled by telling the system that you want
it to look at your own table, in RAM. The table requires 76 bytes
of RAM, and should be set up before you tell the system about it,
to prevent nasty happenings. It's also a good idea to make all
unused RAM vectors point to an RTE instruction, just in case they
are triggered. When you've set up your table, you tell the system
to use it by doing a QDOS system call, via TRAP #1.

55

CHAPTER 6 Exception Processing, Traps and Interrupts

It requires the following parameters:

D0 byte — 7 — signals 'trap redirection'
D1 long — Job ID — normally —1
A1 long — start of RAM vector table

As with many QDOS calls, D1 must contain the relevant Job ID. This
is because QDOS is multi-tasking, and different jobs may have
different RAM vector tables. Normally, only one job is running,
namely BASIC. The value of —1 is used to indicate 'the current
job'.

An example of RAM vectors

When testing machine code programs, it can be very difficult to
debug them if they simply cause the QL to 'hang' — in other words,
the QL just sits there, in some form of infinite loop. I have
found (the hard way!) that two of the most popular ways of
generating apparent infinite loops are:

(i) Trying a word or long access on an odd address
(ii) Mis-coding an instruction, and using illegal addressing

modes

By writing your own exception handlers for 'address error' and
'illegal instruction', you can improve your chances of finding
errors such as these.

There follows a complete program that sets up a RAM exception
table so that either one of these programming errors will produce
a suitable message on the screen, though will not necessarily
leave the machine in a fully-functional state.

Both handlers use a QDOS vector to print the messages 'bad
parameter' for an address error and 'not implemented' for an
illegal instruction. Both these messages are system error
messages, with numbers —15 and —19 respectively. The vector used
is the one at $00CA, which requires only one parameter — namely
the error code in register D0. The error message will be printed
on channel 0, the lower screen. (Of course, if your wild program
has inadvertently corrupted certain system variables then you
won't see anything printed.) They each also try to recover from
the error, by returning to the instruction after the one that
caused the exception — this will work with some errors, but is not
foolproof.

56

CHAPTER 6 Exception Processing, Traps and Interrupts

Listing 6.1: Trapping Program Bugs

43FA0048 SETUP LEA TABLE(PC) A1=table start
41FA0026 LEA ADDERR(PC),A0
22C8 MOVE.L A0,(A1)+ store ADDERR in TABLE
41FA0032 LEA ILLERR(PC),A0
22C8 MOVE.L A0,(A1)+ store ILLERR in TABLE+4
41FA002A LEA OTHER(PC),A0
203C0000 MOVE.L #16,D0 number of other vectors-1
0010
22C8 FILTAB MOVE.L A0,(A1)+ store OTHER in rest of table
51CBFFFC DBF D0,FILTAB do all 17
43FA0028 LEA TABLE(PC),A1
72FF MOVEQ #-1,D1 do job ID
7007 MOVEQ #7,D0 signal 'Ram traps'
4E41 TRAP #1 tell QDOS about it
4E75 RTS then back to BASIC

Address error exception handler

203CFFFF ADDERR MOVE.L #-15,D0 'bad parameter'
FFF1
508F ADDQ.L #8,A7 skip over extra words on stack
30790000 PRTERR MOVEA $0CA,A0 get the vector
00CA
4E90 JSR (A0) call the 'print error message'

routine
4E73 OTHER RTE and end the exception

Illegal exception handler

203CFFFF ILLERR MOVE.L #-19,D0 'not implemented'
FFED
54AF0002 ADDQ.L #2,2(A7) restart at next instruction
60EA BRA PRTERR then print the message

TABLE DS 76 room for the RAM vector tabl

It works like this. Firstly, a RAM vector table must be set up,
and this is at location TABLE. The first vector in it is the
address error vector, so ADDERR gets MOVEd into it. Note the way
auto-increment addressing has been used, to make it easier to set
the table up. Into the next vector location goes ILLERR, then a
loop makes sure all the other vectors are OTHER, which is a RTE
statement. After the loop, the trap is done to tell the system to
use the table. The address error exception handler is
straightforward — D0 is set to an appropriate number for 'bad
parameter', then 8 is added to the value of A7 — this is done to
skip over the extra four words put on the stack. Next the vector
is read from the table in the ROM, the 'print error message'
routine called, and finally an RTE done.

57

CHAPTER 6 Exception Processing, Traps and Interrupts

The illegal exception handler firstly sets D0 to -19 for 'not
implemented', then 2 is added to location 2(A7). What this does is
to increase the return address by two, so that the RTE will not go
back to the instruction that caused the exception in the first
place, but to the next one.

Then a branch is made to PRTERR, to print the message and exit
from the exception. The mnemonic DS is not a 68008 instruction,
but an assembler instruction standing for 'define space'. It
simply makes sure that no following instructions would get
assembled into the area. (For Zilog fans, it is equivalent to the
Z80 pseudo-op DEBS.)

As a simple test, try running programs with the instruction
ILLEGAL in it, and try doing MOVE.L 21,(A0) which tests both
exception handlers.

It is not 100% perfect, and as with all programs there is scope
for possible improvements. How about getting it to print the
instruction at which the exception occurred, or making it go into
a deliberate infinite loop afterwards so that you can be sure of
reading the message before your program continues and corrupts the
screen?

58

CHAPTER 7 Using the Hardware and Firmware

The QL has many interesting hardware features, and in this chapter
the most useful are described, including the screen and 8049 second
processor. There are two main areas of the QL memory map that
control this hardware — the screen memory, which is variable, and
the I/O area starting at $18000.

The screen
The QL screen has two modes — 4 colour, with 512 x 256 pixels, and
8 colour, with 256 x 256 pixels and flashing. In both modes, 32K
RAM is taken for the display, normally starting at $20000. The mode
can be controlled by two methods — the proper way, using a QDOS
trap, or the not so proper way, by directly accessing the I/O
location of the screen register.

Regardless of mode, the screen memory organisation is basically
similar, with the screen divided into 256 lines, each of 128 bytes.
Each line of bytes is organised into 64 words, though the meaning
of each word's contents depends on the mode. The top left of the
screen corresponds to location $20000, and the memory is organised
in the expected order — from left to right along each line, going
from the top to the bottom, so for example the lefthand side of the
second line is location $20080. The normal screen memory map is
shown in Figure 7.1

Although the actual screen size is 512 x 256 in mode 4, most
televisions and some monitors are incapable of showing the whole
screen. Normally some part of each extreme 'falls off the edge' of
the viewable screen, so software has to compensate for it. This is
the reason why the QL asks you to press F1 or F2 when you switch it
on, so that the default windows can be set up to suit the display
device. Figure 7.2 shows how the default windows for both modes
compare with the actual screen size, to give you an idea of what
parts of the screen are not normally displayed. Note that all
coordinates are based on the pixel coordinate system, which defines
the screen to be 512 x 256 pixels, regardless of mode.

59

CHAPTER 7 Using the Hardware and Firmware

Figure 7.1: Usual Screen Memory Map.

60

CHAPTER 7 Using the Hardware and Firmware

 Figure 7.2: Default Window Sizes.

61

CHAPTER 7 Using the Hardware and Firmware

There are two ways of writing things on to the screen — either by
one of the many QDOS traps, or by writing directly into screen
memory. The advantages of the system traps are that they are
relatively easy to use and (almost) bug-free. The disadvantages
are that they are comparatively slow to execute, and require QDOS
to be usable. The latter reason may seem a bit strange, but later
on we'll discover why — it's to do with a second possible memory
location for the screen.

The contents of each word controls the colour of each pixel, and
the flashing in 8 colour mode. The colour values are shown in this
table:

Number Binary 8 colour 4 colour
0 000 black black
1 001 blue black
2 010 red red
3 011 magenta red
4 100 green green
5 101 cyan green
6 110 yellow white
7 111 white white

It can be seen that the binary for each colour controls the mix of
the primary colours — bit 0 determines blue (in 8 colour mode
only), bit 1 determines red, and bit 2 green. In 4 colour mode,
red and green together give white.

This use of each bit of the words depends on the screen mode as
follows.

4 colour mode — high resolution

This is the simplest, with one word controlling eight pixels of
the display. Each bit of the high byte controls the green content
of each pixel, while each bit in the low byte controls the red
content. If the same bit is set in both bytes of the word, then
the resultant colour is white. If both are reset there is no
colour — ie black. This is shown in Figure 7.3.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O bit
no.

G0 F0 G1 F2 G2 F2 G3 F3 R0 B0 R1 B1 R2 B2 R3 B3

high byte (even) low byte (odd)

Figure 7.3: Word Arrangement in Four-colour Mode.

62

CHAPTER 7 Using the Hardware and Firmware

So, For example: if a screen word contains $53C6 then the
corresponding pixel colours are red / white / black / green /
black / red / white / green, from left to right. This is worked
out by writing the binary form, as in Figure 7.4

resultant colours

Figure 7.4

8 colour mode — low resolution

In this mode one word controls the colour of four pixels, with the
high byte determining green and flash, and the low byte
determining red and blue content of each pixel. The flash facility
works rather strangely, in a serial fashion. At the beginning of
each pixel line, flash is off, and when a suitable bit is set,
flash will go on, and stay on across the line until another flash
bit is set, which will switch it off, and so on across the line.
In this way, a Set flash bit toggles the current flashing status,
which does make it harder to use. The bit usage in each word is
shown in Figure 7.5

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O bit
no.

G0 F0 G1 F2 G2 F2 G3 F3 R0 B0 R1 B1 R2 B2 R3 B3

high byte (even) low byte (odd)

G – green
F – flash
R – red
B – blue

Figure 7.5: Word Arrangement in Fight-colour Mode

63

CHAPTER 7 Using the Hardware and Firmware

So, if the word $288B will give pixel colours of red/green/yellow/
magenta, from the binary (see Figure 7.6 — for simplicity, all the
flash bits are zero). The primary way of altering the screen mode
is via a QDOS call with TRAP #1, with the following parameters:

DO — $10 to select function
D1 — 0 for 4 colour, 8 for 8 colour
D2 — usually — 1

The trap does several things — firstly it changes the mode by
sending data to the hardware, then zeroes every byte in the
display memory (ie turns it black).

Resultant colours

Figure 7.6

Next it goes through all the screen channels and alters their
parameters to suit the new mode, does a CLS for each window, and
finally returns with D2.byte containing either 0 if Fl was pressed
on switch-on, or 1if F2 was pressed.

There is an alternative way to change screen mode, which is
suitable if you aren't going to be using any QDOS screen calls, or
if you want to do without QDOS altogether. The 'master chip status
register' (or MCSR) is the long name for the memory location that
controls the screen mode, and is at location $18063. The byte that
gets written into it determines the mode, depending on certain
bits, as follows:

BIT FUNCTION
1 0 — turn display on, 1 — turns off
3 0 — 4 colour mode, 1 — 8 colour mode
7 0 — screen #0, 1 — screen #1 (see later)

Don't worry about bit 7 at the moment — normally leave it zeroed.

64

CHAPTER 7 Using the Hardware and Firmware

Plotting points

Although there is a QDOS trap to plot points, it is a very useful
exercise to write your own routine, and it is bound to be many
times faster than the QDOS equivalent.

To plot points, we must first work out the screen address for a
given pixel, given the X and Y coordinates. To make it easier, we
shall assume that the screen is always 512 < 256 pixels, in either
mode. Now, each line takes up 128 bytes, so for a given Y
coordinate the start of the line is at location $20000+128*Y, as
$20000 is the screen start address. As 512 pixels across
correspond to 128 bytes, the number of bytes across the screen is
X/4 (as 512/128=4). Thus, given X and Y the screen memory location
is $20000+128* Y + X/4. (You can check this from BASIC if you
like.) As the screen is handled in words, it is important later on
that the address is even. As this calculation is the same for both
modes, let's see how this translates into 68008 code (assume
X=D4.W, Y=D5.W):

LSR.W #2,D4 divide X by 4
ANDI.L #$007E,D4 make it 0-126 (and even)
MOVEA.L #$20000,A0 screen start
ADDA.W D4,A0 add (X/4)
LSL.W #7,D5 multiply Y by 128
ADDA.W D5,A0 and add that in so A0=screen start

After this, the screen address will be in register A0. Note the
way the logical shifts were used to divide the coordinates by
powers of two.

To plot pixels, you have to work out a new word based on the
desired colour, read in the existing word from the screen, combine
the two, and write it back to the screen. The full listing
follows, with three main parts — HIPLOT, which plots in 4 colour
mode, PIXCALC, which is similar to the code above, and LOPLOT,
which plots in 8 colour mode. To use HI and LOPLOT, the x
coordinate has to be in D1, the y coordinate in D2, and the colour
in D3. These registers were chosen to make it easy to use with the
CALL statement from BASIC.

65

CHAPTER 7 Using the Hardware and Firmware

Listing 7.1: Plotting Routines

6124 HIPLOT BSR PIXCALC work out address
EB4D LSL.W #6,D3 D3=.......GR.000000
3803 MOVE.W D3,D4 D4=.......GR.000000
EF4C LSL.W #7,D4 D4=GR.0000000000000
02448000 ANDI.W #$8000,D4 D4=G000000000000000
02430080 ANDI.W #$0080,D3 D3=00000000R0000000
8644 OR.W D4,D3 D3=G0000000R0000000
02410007 ANDI.W #7,D1 D1=no of rotates
343C7F7F MOVE.W #$7F7F,D2 D2=01111111R0000000
E27A ROR.W D1,D2 rotate mask
E27B ROR.W D1,D3 rotate colour
C550 AND.W D2,(A0) D2=screen colour
8750 OR.W D3,(A0) put in new colour
4280 CLR.L D0 prepare D0
4E75 RTS then back to BASIC

Calculate screen address in A0
given x co-ord in D1, y co-ord in D2

3801 PIXCALC MOVE.W D1,D4 D4=x co-ord
3A02 MOVE.W D2,D5 D2=y co-ord
48C5 EXT.L D5 make y Long
E44C LSR.W #2,D4 /4 to get bytes across
02840000 ANDI.L #$007E,D4 D4=0-126 even
007E
207C0002 MOVE.L #$20000,A0 start of screen
0000
D0C4 ADDA.W D4,A0 add in x
EF4D LSL.W #7,D5 multiply by 128
D0C5 ADDA.W D5,A0 and add in to result
4E75 RTS then exit

8 colour routine, same paprmeters
as HIPLOT

61E2 LOPLOT BSR PIXCALC work out address
ED4B LSL.W #6,D3 D3=.......RGB000000
3803 MOVE.W D3,D4 D4=D3
EF4C LSL.W #7,D4 D4=RGB0000000000000
02448000 ANDI.W #$8000,D4 D4=G000000000000000
024300C0 ANDI.W #$00C0,D3 D3=00000000GB000000
8644 OR.W D4,D3 D3=R0000000GB000000
02410006 AND.W #6,D1 D1=0 to 6 even
343C7F3F MOVE.W #$7F3F,D2 D2=0111111100111111
E27B ROR.W D1,D3 rotate colour
E27A ROR.W D1,D2 rotate mask
C550 AND.W D2,(A0) read screen
8750 OR.W D3,(A0) put in colour
4280 CLR.L D0 ready for BASIC
4E75 RTS then back

66

CHAPTER 7 Using the Hardware and Firmware

The way HIPLOT works is by firstly calling PEXCALC to work out A0,
and then a series of shifts and ANDs are done to manipulate the
colour value to correspond to something like Figure 7.3. Note that
bit 0 of D3 is ignored, to correspond to the colour table
previously. It is difficult to explain in words what each rotate
does, so down the side I've shown the binary form of the registers
to make it clearer. The bits marked G andR stand for green and
red, and those marked '.' mean 'don't care'. After the OR, D3
contains a value corresponding to the correct screen format for
the G and R bits. D2 is used as a mask, and they are both rotated
the correct number of times to correspond to the x coordinate AND
7. D2 is then ANDed with the screen contents, to remove any colour
in the pixel, then D3 Ored with the screen, to put the desired
colour into the screen.

PIXCALC is not quite the same as above. Firstly, the values of D1
and D2 are transferred to D4 and D5 respectively, so their values
do not get corrupted. Otherwise it is much the same as before.

LOPLOT is the 8 colour routine, and similar actions to HIPLOT are
taken, but suitably altered to suit the screen format in Figure
7.5.

Register D1 gets ANDed with 6 to make sure the number of rotates
is 0, 2,4, or 6 only, as it must be an even number. The state of
the FLASH bits on the screen is left unaltered by it.

Printing characters

Characters on the screen consist of various numbers of plotted
pixels, so the above routines could be extended. This has two
disadvantages — the first is that the routine has to be written,
which is quite tricky, and the second is that the location of the
character set varies on different versions of the QL ROM. In any
case, there's not much point in reinventing the wheel — quite a
bit of the ROM is concerned with character output via windows, so
it ts much easier to use a couple of QDOS traps. Without getting
too involved in QDOS, basically all input/output relies on channel
IDs. Note that these [Ds are not the same as channel numbers in
SuperBASIC, but are based on a similar principle.

Really the simplest way of putting characters on the screen is by
using existing windows — the most obvious being the window that
the BASIC PRINT statement sends data to. In BASIC this is channe]
#1, but to QDOS it is channel ID $00010001.

67

CHAPTER 7 Using the Hardware and Firmware

The main output trap is TRAP #3, with the following parameters:

D0 byte — 5 to signal 'output'
D1 byte — character code to be printed
D3 word — timeout, usually —1
A0 long — channel ID

Generally speaking, when you want to send characters, you don't
want any register values altered. Regrettably the trap does alter
certain values, so to get round this here is a general routine
called PRINT that sends character D1 to the screen window, without
altering any register values.

Listing 7.2: PRINT Subroutine

prints chr$(D1) onto channel 1
without corrupting any registers
NOTE: output is lost if error in process

48E7D0C0 PRINT MOVEM.L D0-1/D3/A0-1,-(A7) save registers
207C0001 MOVE.L #$00010001,A0 set channel ID
0001
76FF MOVEQ #-1,D3 set 'timeout'
7005 MOVEQ #5,D0 signal 'output'
4E43 TRAP #3 do the printing
4CDF030B MOVEM.L (A7)+,D0-1/D3/A0-1 restore page
4E75 RTS then exit

It is quite straightforward — first the necessary register values
are saved on the stack, then the required parameters selected, and
the trap done.

Finally all the register values are restored, and an RTS done.
Beware though — if the window is not open, nothing will get
printed, and the program will be none the wiser, and neither will
you!

Suppose you don't want to use any of the standard windows for
output? Well, the way to do it is to open a channel to suit, and
the result of a successful operation is that a new channel is
created, with an exclusive ID number. The 'open trap' is #2, with
these parameters:

D0 byte — 1 to signal 'open'
D1 long — job ID, normally —1
D3 long — 2 to signal 'new channel'
A0 long — address of channel name

68

CHAPTER 7 Using the Hardware and Firmware

A0 should point to the channel name — this should be in the form
of a word showing the length of the channel name, followed by the
ASCII of the name itself. (The channel name must start at an even
address.) Registers D1-D3 and A1—A3 are corrupted by the call, D0
returns non- zero if any error has occurred, whereas if there are
no errors then A0 returns with the channel ID (long).

When a new channel has been successfully opened, a routine similar
to PRINT above can be used to send characters, but with suitable
alteration to the value of A0.

The inverse function of open is, guess what, 'close'. This is TRAP
#2, with two parameters:

D0 byte — 2 to signal 'close'
A0 long — channel ID of the channel to be closed

If D0 returns with a non-zero value, then it indicates that the
channel was never open in the first place.

There is a lot more that can be done with these QDOS calls, but
this is enough to send characters to the screen. The other most
useful QDOS calls are for accessing the 8049 processor, in order
to read the keyboard.

The 8049 second processor

There are two processors in the QL — the 68008 does all the hard
work, like running SuperBASIC and QDOS, while at the same time a
second processor, an Intel 8049, does the easy bits, like scanning
the keyboard, controlling the serial ports, and other monotonous
tasks. It takes care of the drudgery of looking after a computer
such as the QL.

Unlike the 68008, the 8049 is not directly programmable, as its
program area is not accessible, and is fixed in ROM anyway. It
communicates with the 68008 by two ports, but the method is quite
complex and you don't need to know how it works to use it. The
8049 is known as the IPC, which stands for 'independent peripheral
controller'.

The keyboard

The keyboard is connected to the 8049 only, and the 68008 scans it
by asking the 8049 to tell it what keys are being held down. The
normal way of scanning is by interrupts, with the 8049 continually
inserting the key pressed into a queue in the 68008's memory. The
way to read the queue is by another couple of QDOS system traps,
by asking for input from a 'con_' type of channel.

69

CHAPTER 7 Using the Hardware and Firmware

The easiest to use is the same channel as we used for output — the
one with an ID of $00010001. The relevant trap is TRAP #3, 'wait
for a key to be pressed', which requires the following parameters:

D0 byte — 1 to signal 'fetch key'
D3 word — timeout, normally —1
A0 long — channel ID, normally $00010001
On return D1 (byte) contains the ASCII of the key pressed

There is another way to scan the keyboard, useful for multiple key
presses, or if the usual buffering is not required, using the QDOS
equivalent of the BASIC KEYROW function. This uses a trap to call
the 8049 directly, by doing the following:

Listing 7.3: QDOS Version of KEYROW

requires row number in Di (byte)
exits with value in D1 byte

47FA0022 LEA TEMP(PC),A3 A3=storage
26BC0901 MOVE.L #$0901000,(A3) store parameters
0000
426B0004 CLR.W 4(A3) store the parameter
17410006 MOVE.B D1,6(A3)
177C0002 MOVE.B #2,7(A3)
0007
7011 MOVEQ #17,D0 signal IPC command
4E41 TRAP #1 use the 8049
4E75 RTS then exit
00000000 TEMP: DS 8 8 spare bytes for command
00000000

It uses TRAP #1 with DO set to 17, which is the IPC communications
trap.

It requires A3 to point to a command, which has to be in the form
of various parameters. There are 15 different commands,
distinguished by the first byte, and in this case command 9
(keyboard direct read) is used.

On exit from the routine D1 byte will contain the equivalent of
the BASIC KEYROW function.

70

CHAPTER 7 Using the Hardware and Firmware

The alternate screen

The QL hardware allows two different areas to be used for the
screen memory — $20000, which we have seen, and $28000. The memory
map for the alternate screen is identical to the normal one, but
with $8000 added to all addresses. Unfortunately the QL firmware
does not easily allow use of this 'screen #1', only the usual
'screen #0'.

The problem is caused by the fact that screen #1's memory is
exactly where all the important system variables and tables lie.
If you just switch it in and write to it, sooner or later the
system will crash when you corrupt something important. From
examining a listing of QDOS, it can be seen that originally the
system variables could lie anywhere in RAM, addressed by register
A6. Unfortunately at some stage this facility was disabled, so
that QDOS is forced to have its variables at $28000.
(Interestingly, the window channels still have as one of their
parameters a long word that defines which screen they refer to.)
Thus, to use screen # 1, QDOS must lose all its variables, so it
has to be disabled first.

Switching off QDOS

To disable QDOS, a certain sequence of events has to be followed.
This is as follows:

(i) Go into supervisor mode, using TRAP #0. This is to stop
QDOS trying to multi-task, which requires certain tables
to be in RAM.

(ii) Disable interrupts, by ORI #$0700,SR. This is because
the interrupt handler uses the system variables.

(iii) Make the stack pointer A7 a suitable value, as it may be
in screen #1's memory area.

Having done this, the screens may be switched by directly writing
to the register at $18063 described previously, with the value of
bit 7 controlling the screen number.

With QDOS disabled, most TRAPs and system calls will crash the QL.
The only safe one really is the trap that accesses the 8049 IPC,
which is just as well as it is the only way to read the keyboard.
Most other traps require some system variables to be present,
which they won't be, so don't use them. It means of course that
you'll have to write your own routines for printing characters and
the like, and commands using I/O devices such as the microdrives
are not possible. As the primary use for two screens is in games
software, this is not a great limitation. To plot points, you
could use HIPLOT and LOPLOT described previously, after changing

71

CHAPTER 7 Using the Hardware and Firmware

the initial value of A0 from $20000 to $28000 for screen #1.

72

CHAPTER 8 An A-Z of the 68008 Instruction Set

This chapter contains all the information necessary to code all the
68008 instructions, with details and hints on each. It is best to
work out the opcode itself in binary, and subsequent bytes for
addressing in hex.

Calculating the addressing bytes may seem at first to be very
involved, but it is straightforward as long as you don't try to
rush things.

Calculating addressing bytes

Every calculation that has an address field in it uses six bits to
define the address. This is split into two 3 bit fields, one
defining the mode, the other a register number. The allowed
addressing modes are:

Address Mode Register
Dn 000 reg no.
An 001 reg no.
(An) 010 reg no.
(An)+ 011 reg no.
—(An) 100 reg no.
n(An) 101 reg no.
n(An,A/Dn) 110 reg no.
nn.W 111 000
nn.b 111 001
n(PC) 111 010
n(PC,A/Dn) 111 011
#nn 111 100

Both the mode and register are expressed in binary, for easy incor-
poration into each opcode. This is the complete list, but few
instructions allow all addressing modes. For this reason, a form of
the above table is included with each instruction opcode. Some
types of addressing modes require extra words after the opcode.

Address & Data register direct An & Dn

Both these modes use the register field to hold the relevant
register number, and require no extra bytes. For example: the
instruction

CLR.L D2

would have as its address mode 001 and register field 010.

73

Address register indirect (An),(An)+,—(An)

All three modes use the register field to hold the relevant
register number. None requires any extra bytes.

Address register indirect with displacement d(An)

This mode uses the register field to hold the register number, and
requires one word of extension. The word contains the sign-extended
displace- ment — For example: the instruction

NOT.W $1AA(A3)

is coded as follows. The addressing mode is 101, and the register
field 011. This gives an opcode of 0100011001101011=$466B. The
displacement has to be added afterwards, giving a final instruction
of two words:

466B 01AA.

Address register indirect with index d(An, A/Dn.x)

This mode uses the register field to hold the address register
number, and requires one additional word. The additional word
consists of a byte containing the 8 bit displacement, and another
byte holding other information. The format of this word is

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
D/A r r r W/L 0 0 0 d d d d d d d d

Bit 15 defines the index register
— 0 for data
— 1 for address.

Bit 14-12 define the index register number.
Bit 11 defines the size of the index register

— 0 for W
— 1 for L

Bit 10 to 8 should be zero.
Bit 7 to 0 determine the 8 bit sign-extended displacement.

For example: the instruction

CMP.L $23(A3,D5.W),D0

has an addressing mode of 110, and register field of 011 (from the
first register). The opcode is

10110000 10110011=$B0B3

The extension word becomes

01010000 00100011=$5023

74

forming the full instruction: BOB3 5023

Absolute word nn.W

This has an addressing mode of 111, and a register field of 000. It
requires one word of extension — the absolute word itself. For
example, the instruction:

JSR $3574.W

has an opcode of

010011101 0111000=$4EB8

and has an extension of the word itself, i.e. $3574 giving a full
instruction of:

4EB8 3574

Absolute long nn.L

This has an addressing mode of 111, and a register field of 001. It
requires a long word of extension, being the address itself. For
example: the instruction

JMP $3FC00

would have an opcode of

01001110 11111001=$4EF9

and a long word extension of $0003FCO0, giving a full instruction
of AEF9 0003 FC00

Program counter with displacement n(PC)

This has an addressing mode of 111, with a register field of 010.
It requires one word of extension, the word being the sign-extended
displacement.

The displacement is calculated by subtracting the location of the
extra word from the absolute value of the destination. For example:
if at location $3F000 there is an instruction

LEA $3FC00(PC),A1

the first thing is to work out the opcode, which is:

01000011 11111010=$43FA

which would go into location $3F000.

75

The extension word is going into $3F002, and it calculates it to be
$3FC00-$3F002, which is $00BFE, giving a full instruction of

43FA 0BFE

If you calculate the extension word to be an odd address, unless
you are referencing byte data it probably means you have made a
mistake somewhere.

Program counter with index n(PC,A/Dn.x)

This mode has an addressing mode of 111, and register field 011. It
requires one word of extension, of a similar format as that for
address register indirect with index thus:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
D/A r r r W/L 0 0 0 d d d d d d d d

In this case though, the 8 bit sign-extended displacement is
calculated in the same way as for PC mode, namely by subtracting
the location of the extra word from the absolute location. Note
that the limiting values of the displacement are from — 128 to 127.
If you get a displacement of over 127, you'll have to reorganise
the code, using LEA, by replacing something like:

MOVE.W TOOFAR(PC,A0.L),D1

with

LEA TOOFAR(PC),A1
MOVE.W 0(A1,A0.L),D1

As an example, if at location $3FCO00 you had the instruction:

CMP.B $3FC40(PC,D0.W),D1

its opcode would be

10110010 00111011=$B23B

and the extra word would be at location $3FC02, giving a
displacement of $3FC40—$3FC02=$3E, and an extra word of

00000000 00111110=$003E

giving a full instruction of

B23B 003E

76

Immediate data #nn

This has an addressing mode of 111 with a register field of 100,
and requires one or two extra words, depending on the size of the
instruction itself. For byte-sized instructions, the extra word has
its most significant byte as zero, with the data in the least
significant byte. Word-sized instructions have as the extra word
the data, while long-sized instructions have two extra words —
firstly the most significant word, then the least significant word.
For example, the instruction:

MOVEA.L #$28000,A6

has an opcode of

0010110001111100=$2C7C

and two extra words for the data, giving a full instruction of

2C7C 0002 8000

Mnemonics

In the following pages, each instruction is given a general
mnemonic. It does not contain any indication of the size of the
instruction, and to be as general as possible uses certain
abbreviations:

(address) Signifies addressing mode, the permitted modes
being shown in the table.

x Used for register numbers, and ranges from 0-7. If
two registers are involved in the instruction, 'y'
may also be used as a register number.

(d) Used for data, range usually depending on the
instruction size.

(location) Denotes a location or more usually a program label.

(reg list) Used to signify a register list, such as
DO—3/A3/A6.

Size

Some instructions have only one size, which need not be specified
in the mnemonic. Other instructions can have various sizes which
need to be specified in the mnemonic, while for the rest, size has
no meaning, denoted by n/a.

77

Condition codes

Shown for each instruction is the result on each condition code
flag. The following notation is used:

 0 — flag reset
 1 — flag set
 * — flag is altered
 - — flag is not affected
 ? — flag may be either state — unpredictable

Where the state of the flag does not follow the norm, it will be
explained underneath.

Opcode

This is expressed in binary, with certain bits being denoted by
abbreviations. Each abbreviation is defined underneath.

Addressing modes

The table indicates the allowed addressing modes for each
instruction, along with the mode and register numbers in binary.

78

ABCD — ADD BINARY CODED DECIMAL

Mnemonic: ABCD Dx,Dy and ABCD —(Ax),—(Ay)

Size: byte only

Action: the BCD byte specified first is added to the BCD
bytespecified second, and the state of the extend
bit also added. In the first form, both bytes are
the contents of the lowest eight bits of the data
registers, while in the second form they lie at
locations Ax—1 and Ay—1, and the values of the
address registers are decremented.

Condition codes: X N Z V C
* ? * ? *

Z — cleared if the result is non-zero,
 else unchanged
C — set if a decimal carry occurred, ie sum>99
X — same as carry flag

Opcode: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 0 y y y 1 0 0 0 0 R/M x x x

y — second (destination) register number
x — first register number
R/M — 0 — data register
 1 — address register pre-decrement
 addressing used

Notes: BCD data is stored in bytes, one byte taking two
digits. For example the number 27 decimal is
stored as $27.

79

ADD — BINARY ADD

Mneumonics: ADD (address),Dx and ADD Dx,(address)

Size: byte, word or long

Action: the first parameter is added to the second
parameter. Only the bits specifiied by the size
are used and altered.

X N Z V C
* * * * *

Opcode: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 1 x x x om s s m m m r r r

x — data register number
om — op mode field: 0 — ADD (address)
 1 — ADD Dx,(address)
s — size: 00 — byte
 01 — word
 10 — long

Addressing modes:
Mode mmm rrr ADD (address),Dx ADD Dx, (address)
Dn 000 reg no. Y N
An 001 reg no. Y (not BYTE) N (use ADDA)
(An) 010 reg no. Y Y
(An)+ 011 reg no. Y Y
-(An) 100 reg no. Y Y
n(An) 101 reg no. Y Y
n(An,A/Dn) 110 reg no. Y Y
nn.W 111 000 Y Y
nn.L 111 001 Y Y
n(PC) 111 010 Y N
n(PC,A/Dn) 111 011 Y N
#nn 111 100 Y N

Notes: there are other forms of binary add — ADDA, when
the destination is an address register, ADDI,
when immediate data has to be added to an address
and ADDQ for fast addition.

80

ADDA — ADD ADDRESS

Mneumonics: ADDA (address),Ax

Size: word or long — not byte

Action: the address is added to the contents of the
specified address register. For word operations,
the sum is sign- extended to 32 bits before being
placed in the address register.

Condition Codes: X N Z V C
- - - - -

Opcode: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 1 x x x s 1 1 m m m r r r
x — address resgister number
s — size, 0 — word, 1 — long
m — address mode
r — register address

Addressing modes: Mode mmm rrr
 Dn 000 reg no.
 (An) 001 reg no.
 (An)+ 010 reg no.
 -(An) 100 reg no.
 n(An) 101 reg no.
 n(An,A/Dn) 110 reg no.
 nn.W 111 000
 nn.L 111 001
 n(PC) 111 010
 n(PC,A/Dn) 111 011
 #nn 111 100

Notes: the fact that none of the codition codes are
affected by this can be a great source of
problems when debugging, so beware. Most
assemblers should distingiush between this and
the normal ADD.

81

ADDI — ADD IMMEDIATE

Mneumonics: ADDI #(d),(address)

Size: byte, word or long

Action: the immediate data is added to the specified
address. The size of the data corresponds to the
instruction size.

Condition Codes: X N Z V C
* * * * *

Opcode: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 1 0 s s m m m r r r

followed by one or two extra words containing the
data. For byte-sized operations, one extra word
is needed, the data contained in the least
significant byte. Word-sized operations have the
data in a single extra word, and long operations
have two extra words. Additional addressing bytes
come after these additional words.
s — size, 00 byte, 01 word, 10 long
m — addressing mode
r — address register

 Mode mmm rrr
 Dn 000 reg no.
 (An) 010 reg no.
 (An)+ 011 reg no.
 -(An) 100 reg no.
 n(An) 101 reg no.
 n(An,A/Dn) 110 reg no.
 nn.W 111 000
 nn.L 111 001

Notes: itis illegal to try ADDI #(d),Ax — use ADDA
#nn,Ax or ADDq #nn,Ax instead. For immediate data
in the range 1-8 it is faster and more
ecconomical to use ADDQ.

82

ADDQ — ADD QUICK

Mneumonics: ADDQ #(d),(address)
Size: byte, word or long
Action: as for ADDI, but with a very limited data range

of 1-8 inclusive. The advantage is that it takes
less bytes, and executes around twice as fast.

Condition Codes: X N Z V C
* * * * *
Important: the condition codes are not affected
by ADDQ to an address register.

Opcode: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 d d d 0 s s m m m r r r

d — immediate data. The same as the data in the
instruction, unless #8 is specified, when the
data in the instruction is 0.
 Mode mmm rrr
 Dn 000 reg no.
 (An) 010 reg no. (not byte)
 (An)+ 011 reg no.
 -(An) 100 reg no.
 n(An) 101 reg no.
 n(An,A/Dn) 110 reg no.
 nn.W 111 000
 nn.L 111 001

Notes: normally only the relevant part of the address is
altered by this instruction, depending on the
size, except with the address register — with it,
the result is sign- extended to long for word
operations.

83

ADDX — ADD WITH EXTEND

Mneumonics: ADDX Dx,Dy or ADDX —(Ax),—(Ay)
Size: byte, word or long
Action: the first parameter is added together with the

second and the state of the extend flag, and the
result put back in the second parameter. The
parameters can be specified either by direct data
addressing, or predecrement indirect addressing.

Condition Codes: X N Z V C
* * * * *

Opcode: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 1 y y y 1 s s 0 0 r/m x x x

y — first register number
s— size, 00 byte, 01 word, 10 long
r/m — 0- Dx,Dy, 1 - —(Ax),—(Ay)
x — second register number

Notes: this is mainly used for multiple precision maths
operations.

84

AND — LOGICAL AND

Mneumonics: AND (address),Dx and AND Dx, (address)
Size: byte, word or long
Action: the first parameter is logically ANDed with the second,

and the result placed back in the second. Only the
specified part of both parameters are read and altered.

Condition Codes: X N Z V C
- * * 0 0

Opcode: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 0 x x x om s s m m m r r r
x — data register number
om —0 for AND (address),Dx: 1 for AND Dx, (address)
s — size, 00 byte, 01 word, 10 long
m — addressing mode
r— address register
 Mode mmm rrr AND(address),Dx DX,(address)
Dn 000 reg no Y Y
(An) 010 reg no Y Y
(An)+ 011 reg no Y Y
-(An) 100 reg no Y Y
n(An) 101 reg no Y Y
n(An,A/Dn) 110 reg no Y Y
nn.W 111 000 Y Y
nn.L 111 001 Y Y
n(PC) 111 010 Y N
n(PC,A/Dn) 111 011 Y Y
#nn 111 100 Y N

Notes: it is not possible to have an address register as
either parameter in an AND instruction. It is
necessary to MOVE the address register to a data
register, and use the data register as the
parameter. There are three other forms of AND —
ANDI, for immediate data, and two ANDs for
modifying the status register.

85

ANDI — LOGICAL AND IMMEDIATE

Mneumonics: ANDI #(d),(address)
Size: byte, word or long
Action: the immediate data is logically ANDed with the

address, and the result placed back in the
address.

Condition Codes: X N Z V C
- * * 0 0

Opcode: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 0 1 0 s s m m m r r r
followed by one or two extra words to hold the
data. For byte operations, the least significant
byte of the extra word is used for the data, word
operations, require an extra word, and long
operations require an extra two words.
s — size, 00 byte, 01 word, 10 long
m — addressing mode
r — address register

Addressing modes: Mode mmm rrr
 Dn 000 reg no.
 (An) 010 reg no.
 (An)+ 011 reg no.
 -(An) 100 reg no.
 n(An) 101 reg no.
 n(An,A/Dn) 110 reg no.
 nn.W 111 000
 nn.L 111 001

Notes: as with AND, it is not possible to specify an
address register in the instruction.

86

ANDI TO SR/CCR — AND IMMEDIATE TO STATUS REGISTER

Mneumonics: ANDI #(d),CCR and ANDI #(d),SR
Size: byte for CCR, word for SR
Action: the immediate data is ANDed with the CCR or SR,

and the result placed back into it. Note that
with the SR the instruction is privileged.

Condition Codes: X N Z V C
* * * * *

the value of each flag will be cleared or left
alone, depending on the state of the relevant bit
in the immediate data.

Opcode: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 0 1 0 0 x 1 1 1 1 0 0

followed by an additional word. The word contains
the immediate data (for ANDI to SR), or the low
byte contains the immediate data (for ANDI to
CCR).

x —0 for CCR (byte), 1 for SR (word)

Notes: ANDI to SR is privileged as it lets the
programmer alter the supervisor byte of the SR.
Common instructions and their opcodes are:

027C DFFF ANDI#$DFFF,S go into user mode
027C DFFF ANDI #$7FFF,SR trace off
023C 0000 =ANDI#$00,CCR clear all flags

87

ASL/R — ARITHMETIC SHIFT LEFT & RIGHT

Mneumonics: ASL Dx, Dy and ASL#(d),Dx and ASL (address) and
ASR Dx,Dy and ASR #(d),Dx and ASR (address)

Size: byte, word or long (word only for (address))
Action: an arithmetic shift is one in which the operand has a

number of bits shifted to the left or right, best
illus- trated by a diagram (see Figure 8.1). The number
of shifts and the item shifted can be specified in a
number of ways: using Dx,Dy register Dy is shifted by
the value of Dx, MOD 64. Using #(d),Dx register Dx is
shifted a number of times depending on the immediate
data, from 1 to 8. Using just (address), the contents
of the address are shifted once only, and the size is
always word. Only the relevant part of the parameter is
shifted, depending on the size.

Condition Codes: X N Z V C
* * * * *

X — set according to the diagram, or unaffected by a
zero shift count.

ASL C
Aritmetic data O
shift left X

ASR C
Aritmetic data
shift right X

 Figure 8.1: Arithmetic Shifts.

N — set if the highest bit of the result is set.
Z — set if the result is zero, else cleared.
V — set if the highest bit changes at any time, else
cleared.
C — set according to the diagram, or unaffected by a
zero shift count.

88

Opcode: for Dx,Dy:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 0 x x x l/r s s 1 0 0 y y y

x — first register (count register) number
l/r — direction, 0 for right, 1 for left
s — size, 00 byte, 01 word, 10 long
y — second register number (the one shifted)

for #Dx,Dy:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 0 x x x l/r s s 1 0 0 y y y

d — immediate data,from 0-7,0 gives a shift count of 8
l/r — direction 0 for right, 1 for left
s — size, 00 byte, 01 word, 10 long
x — data register number

for (address) (ie memory shifts):
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 0 x x x l/r s s 1 0 0 y y y

l/r — direction, 0 for right, 1 for left
m — addressing mode
r — address register

Addressing modes (for memory shifts only:
 Mode mmm rrr
 (An) 010 reg no.
 (An)+ 011 reg no.
 -(An) 100 reg no.
 n(An) 101 reg no.
 n(An,A/Dn) 110 reg no.
 nn.W 111 000
 nn.L 111 001

89

BCC — BRANCH ON CONDITION

Mneumonics: Bcc (location)
Size: byte or word
Action: if the specified condition is true, then a branch is

made to the desired location. If not, the instruction
after the branch is executed. The destination of the
branch is not stored as an absolute number, but as a
two's-complemented displacement, making the instruction
position independent.

Condition Codes: X N Z V C
- - - - -

Opcode: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 c c c c d d d d d d d d

which may be followed by an extra word.
c — condition, one of:
0010 HI
0011 LS
0100 CC
0101 CS
0110 NE
0111 EQ
1000 VC
1001 VS
1010 PL
1011 MI
1100 GE
1101 LT
1110 GT
1111 LE d — the displacement. If this is zero, then an
extra word is used for a 16 bit displacement. In either
case, the displacement is calculated by subtracting the
(location of the Branch opcode+2) from the absolute
value of the destination. If the result is less than
128 then an 8 bit displacement can be used. If it is
from —2 to —128 then the two's-complement can be used
as an 8 bit displacement. If the result does not fall
into either of these ranges, then the 8 bit
displacement has to be zero, and an extra 16 bit signed
displacement added.For example: if at location $3F000
there are two instructions

 BEQ $3FC50
 BPL $3FF000

the respective displacements would be 3FC50—3FC02=004E
and 3FF00—3FC04=02FC, giving the opcodes of:
674E
6A00 02FC

Notes: the two 'missing' condition codes correspond to these
instructions:

90

 0000 — BRA, unconditional branch
 0001 — BSR, branch to subroutine.

If you manage to calculate an odd displacement then
you've made a mistake somewhere.

91

BTST, BCHG, BCLR, BSET — TEST BIT INSTRUCTIONS
Mneumonics: BTST Dx,(address) and BTST #(d),(address)

BCHG Dx,(address) and BCHG #(d),(address)
BCLR Dx,(address) and BCLR #(d),(address)
BSET Dx,(address) and BSET #(d),(address)

Size: byte (for memory) and long (for data registers)
Action: these are a family of instructions of the form

'Test a bit and ?'. They all test a particular
bit of an address, then alter the bit in some
way.

BTST — test a bit (and do nothing with it)
BCHG — test a bit and change — the bit gets
complemented
BCLR — test a bit and clear — the bit gets reset
BSET — test a bit and set — the bit gets set to 1
The bit number can be expressed in two ways —
either as immediate data, using #(d), or by
having the bit number in a data register. If
(address) is a data register, then the bit number
is reduced MOD 32 allowing access to all its
bits. If (address) is not a data register, then
the memory is referenced as byte-sized, and the
bit number taken MOD 8.

Condition Codes: X N Z V C
- - * - -
Z — set if the bit tested was zero, else reset

Opcode: there are two forms of opcodes — for dynamic bit
number, in a data register, or static bit number,
as immediate data.
Dynamic bit number — Dx, (address)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 x 0 1 0 c c m m m r r r
x — data register number
c — instruction type:
 BTST — 00
 BCHG—01
 BCLR— 10
 BSET— 11
m — addressing mode
r — address register
Immediate data — # (d), (address)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 1 0 0 0 c c m m m r r r
followed by an extra word, containing the
immediate data.
c — instruction type (see above)
m — addressing mode

92

r— address register
Addressing modes: The same addressing modes are allowed in all

forms of the instruction, namely:
 Mode mmm rrr
 (An) 010 reg no. (long sized)
 (An)+ 011 reg no.
 -(An) 100 reg no.
 n(An) 101 reg no.
 n(An,A/Dn) 110 reg no.
 nn.W 111 000
 nn.L 111 001

Notes: To test bit numbers greater than 7 on memory
addresses, MOVE the memory contents into a data
register of suitable size, and use the static bit
number form of the instruction. Note that an
address register can not be directly specified in
any of these instructions.

93

BRA — BRANCH ALWAYS
Mneumonics: BRA (location)
Size: byte or word
Action: this is an unconditional branch instruction, and

the destination is specified relative to the
instruction.

Condition Codes: X N Z V C
- - - - -

Opcode: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 x 0 1 0 c c m m m r r r
may be followed by an extra word.
d — 8 bit displacement — if this is zero then an
extra word follows, giving a 16 bit sign extended
displace- ment. Both values are worked out in the
same way as the Bcc instructions, namely by
subtracting the location of the Branch opcode+2
from the absolute value of the destination.

Notes: it is not possible to have a short branch to the
following opcode, only a long branch. This is
useful to remember when debugging by hand.

94

BSR — BRANCH TO SUBROUTINE
Mneumonics: BRA (location)
Size: byte or word
Action: the address of the instruction following this one

is placed on the stack, then control passes to
the desired location. It stores the destination
in the same relative form as the branch
instructions.

Condition Codes: X N Z V C
- - - - -

Opcode: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 0 0 1 d d d d d d d d
d— 8 bit two's-complemented displacement may be
followed by an extra word if d=0. The value and
size of the displacement is calculated in the
usual way (see Bec and BRA).

Notes: this is a relative form of the JSR instruction,
but without the flexibility of the addressing
modes of JSR.

95

CHK — CHECK REGISTER
Mneumonics: CHK (address),Dx
Size: word only
Action: the lowest 16 bits of the data register are

compared to the two's-complement value at
(address). If the register value is less than 0
or greater than the specified value, a CHK
exception will occur. This is to allow fast
checking of boundary limits on such things as
arrays.

Condition Codes: X N Z V C
- * ? ? ?
N — set if Dx<0, reset if Dx is greater than
(address), else undefined

Opcode: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 0 x x x 1 1 0 m m m r r r
x — denotes data register number
m — addressing mode
r — address register

Addressing modes: Mode mmm rrr
 Dn 000 reg no.
 (An) 010 reg no.
 (An)+ 011 reg no.
 -(An) 100 reg no.
 n(An) 101 reg no.
 n(An,A/Dn) 110 reg no.
 nn.W 111 000
 nn.L 111 001
 n(PC) 111 010
 n(PC,A/Dn) 111 011
 #nn 111 100

Notes: all addressing modes are allowed, with the

exception of address register direct. As the CHK
exception normally does nothing on the QL, this
is not really very useful. However, it is one of
the RAM re-definable vectors, so it could be used
in your own programs for limit checking.

96

CLR — CLEAR
Mneumonics: CLR (address)
Size: byte, word or long
Action: the specified address is zeroed. The number of

bits set to 0 depends on the specified size of
the instruction. It is the fastest way of putting
0 into memory or registers.

Condition Codes: X N Z V C
- 0 1 0 0
s — size, 00 byte, 01 word, 10 long
m — addressing mode
r — address register

Opcode: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 0 x x x 1 1 0 m m m r r r
x — denotes data register number
m — addressing mode
r — address register

Addressing modes: Mode mmm rrr
 Dn 000 reg no.
 (An) 010 reg no.
 (An)+ 011 reg no.
 -(An) 100 reg no.
 n(An) 101 reg no.
 n(An,A/Dn) 110 reg no.
 nn.W 111 000
 nn.L 111 001

Notes: this cannot be used to zero address registers,

nor can it be memory addressed by either of the
PC modes. Probably the most popular use on the QL
is zeroing DO, ready for returning to BASIC. The
instruction for this is CLR.L DO which has an
opcode of $4280.

97

CMP — COMPARE

Mneumonics: CMP (address),Dx

Size: byte, word or long

Action: the address is subtracted from the specified data
register, the condition codes being suitably
altered. The actual result of the subtraction is
not stored.

Condition Codes: X N Z V C
- * * * *
C — set if a borrow occurs (eg 1-5)

Opcode: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 1 x x x 0 s s m m m r r r
x — data register number
s — size, 00 byte, 01 word, 10 long

Addressing modes: Mode mmm rrr
 Dn 000 reg no.
 (An) 010 reg no. (not byte)
 (An)+ 011 reg no.
 -(An) 100 reg no.
 n(An) 101 reg no.
 n(An,A/Dn) 110 reg no.
 nn.W 111 000
 nn.L 111 001
 n(PC) 111 010
 n(PC,A/Dn) 111 011
 #nn 111 100

Notes: all addressing modes are allowed. There are three
other forms of CMP — CMPA, for comparison with
address registers, CMPI, for immediate data, and
CMPM for comparing memory. Most assemblers should
automatically select the correct type, but beware
when hand coding.

98

CMPA — COMPARE ADDRESS

Mneumonics: CMPA (address),Ax

Size: word or long

Action: the contents of (address) are subtracted from the
specified address register, and the condition
codes suitably affected. The result of the
subtraction is not stored. If the size is word
then both parameters are sign-extended to 32 bits
before the subtraction.

Condition Codes: X N Z V C
- * * * *

Opcode: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 1 x x x s 1 1 m m m r r r
x — address register number
s — size, 0 word, 1 long
m — addressing mode
r — address register

Addressing modes: Mode mmm rrr
 Dn 000 reg no.
 (An) 010 reg no.
 (An)+ 011 reg no.
 -(An) 100 reg no.
 n(An) 101 reg no.
 n(An,A/Dn) 110 reg no.
 nn.W 111 000
 nn.L 111 001
 n(PC) 111 010
 n(PC,A/Dn) 111 011
 #nn 111 100

Notes: all addressing modes are allowed.

99

CMPI — COMPARE IMMEDIATE

Mneumonics: CMPI #(d),(address)

Size: byte, word or long

Action: the immediate data is subtracted from the
specified address, and the condition codes
altered. As with all other compares, the result
is not stored.

Condition Codes: X N Z V C
- * * * *

Opcode: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 1 1 0 0 s s m m m r r r
s — size, 00 byte, 01 word, 10 long
m — addressing mode
r— address register

This has to be followed by one or two extra
words, holding the immediate data. For byte
operations, the data is held in the lower byte of
an extra word, word operations use an extra word,
and long operations use two extra words to hold
the data.

Addressing modes: Mode mmm rrr
 Dn 000 reg no.
 (An) 010 reg no.
 (An)+ 011 reg no.
 -(An) 100 reg no.
 n(An) 101 reg no.
 n(An,A/Dn) 110 reg no.
 nn.W 111 000
 nn.L 111 001

100

CMPM — COMPARE MEMORY
Mneumonics: CMPM (Ax)+,(Ay)+
Size: byte, word or long
Action: using post increment addressing, two parts of

memory are compared, by subtracting the first
from the second, altering the condition codes.
The result is not stored. Because of the
addressing mode used, the value of both address
registers is incremented by 1,2 or 4, depending
on the size.

Condition Codes: X N Z V C
- * * * *

Opcode: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 1 x x x 1 s s 0 0 1 y y y
s — size, 00 byte, 01 word, 10 long
m — addressing mode
r— address register
This has to be followed by one or two extra
words, holding the immediate data. For byte
operations, the data is held in the lower byte of
an extra word, word operations use an extra word,
and long operations use two extra words to hold
the data.

Addressing modes: Mode mmm rrr
 Dn 000 reg no.
 (An) 010 reg no.
 (An)+ 011 reg no.
 -(An) 100 reg no.
 n(An) 101 reg no.
 n(An,A/Dn) 110 reg no.
 nn.W 111 000
 nn.L 111 001
 n(PC) 111 010
 n(PC,A/Dn) 111 011
 #nn 111 100
x — first address register
s — size, 00 byte, 01 word, 10 long
y — second address register

Notes: this instruction, used in conjunction with a DBEQ
loop is very useful for searching for sequences
in memory, particularly when tokenising program
lines.

101

DBCC - DECREMENT AND BRANCH UNTIL CONDITION
Mneumonics: DBcc Dx,(location)
Size: word
Action: 'cc' in the mnemonic can be any of the 16 usual

conditions. What happens when this instruction
executes is: if the condition is true, then
control passes to the following instruction; if
not, the lowest 16 bits of the data register are
decremented by one, and the branch made if the
register does not equal —1. It is the main way of
forming loops on the 68008, and the most common
form is DBF, 'decrement and branch until false'.
As the condition, by definition, will never be
met, the loop will always execute until the data
register reaches —1.

Condition Codes: X N Z V C
- - - - -

Opcode: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 c c c c 1 1 0 0 1 x x x
followed by one extra word, for the displacement.
c — denotes condition, one of:
 0000 T (no practical use in this instruction)
 0001 F-most used form
 0010 HI
 0011 LS
 0100 CC
 0101 CS
 0110 NE
 0111 EQ
 1000 VC
 1001 VS
 1010 PL
 1011 MI
 1100 GE
 1101 LT
 1110 GT
 1111 LE
x — data register number The extra word should
contain the displacement, which is calculated by
subtracting the location of the extra word from
the absolute destination, with a range of $7FFF to
—$8000 inclusive.

Notes an alternate form of DBF is DBRA. When setting the
initial value of the loop count register, you
should remember that the loop will execute a
maximum of the original value plus one, as it
terminates on reaching —1, not 0 as would normally be
expected.

102

DIVS — SIGNED DIVISION

Mneumonics: DIVS (address),Dx

Size: word only

Action: The contents of the specified data register are
divided by the given address, and the result
placed back in the data register. The original
parameters are taken to be 16 bit quantities, and
the result takes 32 bits — the lower 16 bits take
the integer result of the division (the
quotient), while the higher 16 bits hold the
remainder. The division is calculated using
signed arithmetic, and an attempt to divide by
zero will cause the relevant exception to occur.

Condition Codes: X N Z V C
- * * * 0
N — set if the integer result is negative
Z — set if the integer result is zero
V — set if the integer result is greater than 16
bits. If it does occur, the state of the N and Z
flags will be undefined.

Opcode: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 0 0 x x x 1 1 1 m m m r r r
x — data register number
m — addressing mode
r— address register

Addressing modes: Mode mmm rrr
 Dn 000 reg no.
 (An) 010 reg no.
 (An)+ 011 reg no.
 -(An) 100 reg no.
 n(An) 101 reg no.
 n(An,A/Dn) 110 reg no.
 nn.W 111 000
 nn.L 111 001
 n(PC) 111 010
 n(PC,A/Dn) 111 011
 #nn 111 100

Notes: this is one of four instructions that take varying
amounts of time to execute, depending on the values of
its parameters. On the QL, the divide by zero exception
is usually ignored.

103

DIVU — UNSIGNED DIVISION

Mneumonics: DIVU (address),Dx

Size: word

Action: The contents of the data register are divided by
the specified address, and the result placed back
in the data register. Both original operands are
taken as 16 bit, and the result is 32 bit — the
lower 16 bits the integer result, the higher 16
bits the remainder. Unsigned arithmetic is used
for the calculation. If an attempt is made to
divide by zero, an exception will occur.

Condition Codes: X N Z V C
- * * * 0
N — set if the integer result is negative
Z — set if the integer result is zero
V — set if the integer result cannot be contained
in 16 bits. If an overflow does occur, the state
of the N and Z bits is undefined.

Opcode: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 0 0 x x x 0 1 1 m m m r r r
x — data register number
m — addressing mode
r — address register

Addressing modes: Mode mmm rrr
 Dn 000 reg no.
 (An) 010 reg no.
 (An)+ 011 reg no.
 -(An) 100 reg no.
 n(An) 101 reg no.
 n(An,A/Dn) 110 reg no.
 nn.W 111 000
 nn.L 111 001
 n(PC) 111 010
 n(PC,A/Dn) 111 011
 #nn 111 100

Notes: this instruction also takes a varying amount of
time to execute.

104

EOR — EXCLUSIVE OR

Mneumonics: EOR Dx,(address)

Size: byte, word or long

Action: the contents of the data register are Exclusive
Ored with the contents of the address, and the
result placed in the address.

Condition Codes: X N Z V C
- * * 0 0

Opcode: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 1 x x x 1 s s m m m r r r
x — data register number
s— size, 00 byte, 01 word, 10 long
m — addressing mode
r— address register

Addressing modes: Mode mmm rrr
 Dn 000 reg no.
 (An) 010 reg no.
 (An)+ 011 reg no.
 -(An) 100 reg no.
 n(An) 101 reg no.
 n(An,A/Dn) 110 reg no.
 nn.W 111 000
 nn.L 111 001

Notes: there are three other types of EOR — EORI, for
immediate data, and two instructions for altering
the status register.

105

EORI — EXCLUSIVE OR IMMEDIATE

Mneumonics: EORI#(d),(address)

Size: byte, word or long

Action: the immediate data is exclusive Ored with the
address, and the result placed back into the
address. The size of the immediate data is the
same as the instruction size.

Condition Codes: X N Z V C
- * * 0 0

Opcode: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 1 x x x 1 s s m m m r r r
s — size, 00 byte, 01 word, 10 long
m — addressing mode
r— address register
The opcode should be followed by one or two extra
words of data, depending on the instruction size.

Addressing modes: Mode mmm rrr
 Dn 000 reg no.
 (An) 010 reg no.
 (An)+ 011 reg no.
 -(An) 100 reg no.
 n(An) 101 reg no.
 n(An,A/Dn) 110 reg no.
 nn.W 111 000
 nn.L 111 001

Notes: all addressing modes are allowed.

106

EORI TO CCR/SR — EXCLUSIVE OR IMMEDIATE TO STATUS REGISTER

Mneumonics: EORI#(d),CCR and EORI#(d),SR

Size: byte for CCR, word for SR

Action: the immediate data is exclusive O Red with part
or all of the status register. Because of the
actions, EORI to SR is a privileged instruction.

Condition Codes: X N Z V C
* * * * *
The state of the condition codes depend on the
state of the relevant bits of the immediate data.

Opcode: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 1 0 1 0 o x 1 1 1 1 0 0
followed by an extra word defining the immediate
data. x — 0 for CCR (byte), 1 for SR (word)

107

EXG — EXCHANGE REGISTERS

Mneumonics: EXG D/Ax,D/Ay
Size: long only

Action: the values of the two specified registers are
exchanged. All 32 bits of each register are used.
Data registers and address registers may be
interchanged with themselves and each other.

Condition Codes: X N Z V C
- - - - -

Opcode: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 0 x x x 1 m m m m m y y y
x — register number
m — register types:
 01000 — Dx,Dy 01001 — Ax,Ay
 10001 — Dx,Dy
y — register number

Notes: if a data register and address register are to be
ex- changed, the number of the data register is
always x, and the address register is y. Do not
confuse this with SWAP, or mis-type it as EXT,
which are quite different instructions.

EXT — EXTEND

Mneumonics: EXT Dx
Size: word or long

Action: the data register is sign-extended to 16 or 32
bits, depending on the size. If the size is word,
bit 7 of the data register is copied to bits 8
through 15, else if it is long then bit 15 is
copied to'bits 16 through 31.

Condition Codes: X N Z V C
- * * 0 0

Opcode: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 0 1 0 0 0 1 s 0 0 0 x x x
s — size, 0 word, 1 long
x — register number

Notes: beware that to extend a byte value to a long
value, two instructions are needed:
 EXT.W Dx
 EXT.L Dx

108

ILLEGAL — ILLEGAL INSTRUCTION

Mneumonics: ILLEGAL

Size: n/a

Action: an illegal exception occurs, with the value on
the supervisor stack being the location of this
instruction.

There are many other instructions which can cause
the exception, but some are used as valid
instructions in other 68000 series processors.
This opcode is guaran- teed to remain illegal on
all 68000 series processors.

Condition Codes: X N Z V C
- - - - -

Opcode: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 0 1 0 1 0 1 1 1 1 1 1 0 0

Notes: it may seem strange to guarantee the illegality
of an instruction, but it can be a useful way of
creating your own instructions by writing a
suitable exception handler. This is particularly
valid on the QL as the normal way of adding
instructions, via line 1010 and 1111 opcodes, is
not possible. The illegal exception vector is
redefinable via RAM.

109

JMP — JUMP

Mneumonics: JMP (address)

Size: n/a

Action: control passes to the specified address.

Condition Codes: X N Z V C
- - - - -

Opcode: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 0 1 1 1 0 1 1 m m m r r r
m — addressing mode
r— address register

Addressing modes: Mode mmm rrr
 (An) 010 reg no.
 n(An) 101 reg no.
 n(An,A/Dn) 110 reg no.
 nn.W 111 000
 nn.L 111 001
 n(PC) 111 010
 n(PC,A/Dn) 111 011

Notes: it is very useful that the destination of the
jump can be defined by an addressing mode,
particularly as it makes it easy to implement
jump tables in memory. Be careful when working
out the addressing modes for this instruction
(and JSR to follow). The address is calcu- lated
in the same way as LEA, and not the way MOVE does
it.

110

JSR — JUMP TO SUBROUTINE

Mneumonics: JSR (address)

Size: n/a

Action: the address of the instruction following the JSR
is put on the stack, then a jump made to
(address). The address is specified as an
addressing mode.

Condition Codes: X N Z V C
- - - - -

Opcode: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 0 1 1 1 0 1 0 m m m r r r
m — addressing mode
r — address register

Addressing modes: Mode mmm rrr
 (An) 010 reg no.
 n(An) 101 reg no.
 n(An,A/Dn) 110 reg no.
 nn.W 111 000
 nn.L 111 001
 n(PC) 111 010
 n(PC,A/Dn) 111 011

Notes: as with JMP, the address is calculated in the
same way as LEA, not MOVE.

111

LEA — LOAD EFFECTIVE ADDRESS

Mneumonics: LEA (address), Ax

Size: long only

Action: the address calculated from the addressing mode
is placed into the address register. There is a
subtle difference between this and the MOVE
instruction. MOVE (and most others) calculates
the address, then reads that memory location. LEA
just does the cal- culating, covered in more
detail in Chapter 5.

Condition Codes: X N Z V C
- - - - -

Opcode: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 0 1 1 1 0 1 0 m m m r r r

Addressing modes: Mode mmm rrr
 (An) 010 reg no.
 n(An) 101 reg no.
 n(An,A/Dn) 110 reg no.
 nn.W 111 000
 nn.L 111 001
 n(PC) 111 010
 n(PC,A/Dn) 111 011

Notes: probably the second most popular instruction when
programming the QL. In particular, using it gets
around the problem that memory cannot be written
to directly using the PC modes: using LEA and an
additional address register gets around the
problem e.g.

LEA VARS(PC),A1
MOVE.L D1,(A1)

to replace the illegal

MOVE.L D1,VARS(PC)

112

LINK — LINK

Mneumonics: LINK Ax,#(d)

Size: n/a

Action: firstly the specified address register is pushed
on the stack. The address register is then loaded
with the new value of A7, then the sign-extended
value of the 16 bit data is added to the address
register. Normally the data will be negative, to
make room on the stack (as the stack is upside
down).

Condition Codes: X N Z V C
- - - - -

Opcode: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 0 1 1 1 0 0 1 0 1 0 x x x

followed by an extra word containing the data.
x — address register number

Addressing modes: Mode mmm rrr
 Dn 000 reg no.
 (An) 010 reg no.
 (An)+ 011 reg no.
 -(An) 100 reg no.
 n(An) 101 reg no.
 n(An,A/Dn) 110 reg no.
 nn.W 111 000
 nn.L 111 001
 n(PC) 111 010
 n(PC,A/Dn) 111 011
 #nn 111 100

Notes: the usual use for LINK is to reserve space on the
stack for local variables and parameter passing.
It has a complementary instruction UNLK. The use
of these commands is quite advanced, and will not
be covered here.

113

LSL/R — LOGICAL SHIFT LEFT AND RIGHT

Mneumonics: LSL Dx,Dy and LSL #(d),Dx and LSL (address) and
LSR Dx,Dy and LSR #(d),Dx and LSR (address)

Size: byte, word or long (word only for (address))

Action: A logical shift is one in which the operand has a
number of bits shifted to the left or right, best
illustrated by a diagram (see Figure 8.2). The
number of shifts and the item shifted can be
specified in a number of ways. Using Dx,Dy,
register Dy is shifted by the value of Dx,
modulus 64. Using #(d),Dx, register Dx is shifted
a number of times depending on the immediate
data, from 1 to 8. Using just (address), the
contents of the address are shifted once only,
and the size is always word. Only the relevant
part of the parameter is shifted, depending on
the size.

Condition Codes: X N Z V C
* * * 0 *

X — set according to the diagram, or unaffected by

a zero shift count
N — set if the highest bit of the result is set
Z — set if the result is zero, else cleared
C — set according to Figure 8.2 or cleared by a

zero shift count

LSL C
Logical data O
shift left X

LSR C

Logical O data
shift right X

Figure 8.2: Logical Shifts

114

Opcode: for Dx,Dy:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 0 x x x 1/x s s 1 0 1 y y y

x — first register (count register) number
l/r — direction, 0 for right, 1 for left
s — size, 00 byte, 01 word, 10 long
y — second register number (the one shifted)

for #(d),Dx:
5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 0 d d d 1/x s s 0 0 1 x x x

d — immediate data, from 0-7, 0 gives a shift

count of 8
1/r — direction 0 for right, 1 for left
s — size, 00 byte, 01 word, 10 long
x — data register number

for (address) (ie memory shifts):
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 0 x x x 1/x s s m m m r r r

1/r — direction, 0 for right, 1 for left
m — addressing mode
r — address register

Addressing modes: Mode mmm rrr
 (An) 010 reg no.
 (An)+ 011 reg no.
 -(An) 100 reg no.
 n(An) 101 reg no.
 n(An,A/Dn) 110 reg no.
 nn.W 111 000
 nn.L 111 001

115

MOVE — MOVE DATA

Mneumonics: MOVE (source address),(destination address)

Size: byte, word or long

Action: the main instruction in the 68000 series, it
transfers the contents of the source address into
the destination address. Only the required part
is transferred, depend- ing on the size of the
instruction.

Condition Codes: X N Z V C
- * * 0 0

N — set if the data moved was negative
Z — set if the data was zero

Opcode: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 s s r2 r2 m2 m2 m2 m m m m r r r

s — size, 00 byte, 11 word, 10 long
r2 — destination address register
m2 — destination addressing mode
m — source addressing mode
r — source address register
The destination register and mode are specified
in reverse of the usual order. To calculate an
instructions opcode, first add extra bytes for
the source addressing mode, then any extra
destination addressing mode bytes.

Addressing modes:
Source: Mode mmm rrr

 Dn 000 reg no.
 An 001 reg no.(not byte)
 (An) 010 reg no.
 (An)+ 011 reg no.
 -(An) 100 reg no.
 n(An) 101 reg no.
 n(An,A/Dn) 110 reg no.
 nn.W 111 000
 nn.L 111 001
 n(PC) 111 010
 n(PC,A/Dn) 111 011
 #nn 111 100

116

Destination: Mode mmm rrr
 Dn 000 reg no.
 An see MOVEA
 (An) 010 reg no.
 (An)+ 011 reg no.
 -(An) 100 reg no.
 n(An) 101 reg no.
 n(An,A/Dn) 110 reg no.
 nn.W 111 000
 nn.L 111 001

Notes: note the non-standard way the size of MOVEs is
determined, and the reverse order for the
destination address fields. There are various
other types of MOVE:

— MOVEA, for address registers
— MOVEM, for multiple registers
— MOVEP, for peripherals
— MOVEQ, for fast data registers

as well as status register and stack pointer
MOVEs.

117

MOVEA — MOVE ADDRESS

Mneumonics: MOVEA (address),Ax

Size: word or long

Action: the contents of the specified address are moved
into the address register. For word-sized
operations, the data is sign-extended to 32 bits
before going into the address register.

Condition Codes: X N Z V C
- - - - -
No condition codes are affected, unlike the
normal MOVE instruction.

Opcode: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 s x x x 0 0 1 m m m r r r
s — size, 1 word, 0 long
x — address register number
m — addressing mode
r — address register

Addressing modes: Mode mmm rrr
 Dn 000 reg no.
 An 001 reg no.
 (An) 010 reg no.
 (An)+ 011 reg no.
 -(An) 100 reg no.
 n(An) 101 reg no.
 n(An,A/Dn) 110 reg no.
 nn.W 111 000
 nn.L 111 001
 n(PC) 111 010
 n(PC,A/Dn) 111 011
 #nn 111 100

Notes: all addressing modes are allowed, but byte
operations are not possible. Most assemblers
should automatically distinguish between this and
MOVE.

118

MOVE TO SR/CCR — MOVE DATA TO STATUS REGISTER

Mneumonics: MOVE (address),CCR and MOVE (address),SR

Size: word (including CCR)

Action: the contents of the address are placed in part or
all of the status register. For CCR, only the
lower byte is used, while SR uses the whole word,
and is thus a privileged instruction.

Condition Codes: X N Z V C
* * * * *
The state of the condition codes depends on the
data moved to the CCR and SR.

Opcode: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 0 0 1 x 0 1 1 m m m r r r
x — 0 for CCR, 1 for SR
m — addressing mode
r — address register

Notes: MOVE to CCR and MOVE from CCR are the only
instructions using CCR to be word in size — all
others are byte-sized.

119

MOVE FROM SR — MOVE DATA FROM STATUS REGISTER

Mneumonics: MOVE SR,(address)

Size: word

Action: all of the status register is moved into the
specified address. It is particularly useful for
saving the con- dition codes on the stack.

Condition Codes: X N Z V C
- - - - -

Opcode: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 0 0 0 0 0 1 1 m m m r r r

m — addressing mode
r — address register

Addressing modes: Mode mmm rrr
 Dn 000 reg no.
 (An) 010 reg no.
 (An)+ 011 reg no.
 -(An) 100 reg no.
 n(An) 101 reg no.
 n(An,A/Dn) 110 reg no.
 nn.W 111 000
 nn.L 111 001

Notes: the 68008 does not have a MOVE from CCR instruc-
tion, which is not a problem as this is not a
privileged instruction. However, it is privileged
on the 68010, so MOVE from CCR exists on that
processor, with the same opcode as this, except
that bit 9 is set. The most common form is used
for saving the condition codes on the stack,
namely MOVE SR,—(A7) which has an opcode of
$40E7.

120

MOVE USP — MOVE USER STACK POINTER

Mneumonics: MOVE USR, Ax and MOVE Ax,USP

Size: long only

Action: the user stack pointer can be read and altered
with this instruction, using another address
register. This is a privileged instruction,
designed for programs running in supervisor mode
to access and alter the user stack pointer.

Condition Codes: X N Z V C
- - - - -

Opcode: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 0 1 1 1 0 0 1 1 0 c x x x

c — for Ax,USP, 1 for USP,Ax
r — address register

121

MOVEM — MOVE MULTIPLE

Mneumonics: MOVEM (address),(registers) and
MOVEM (registers),(address)

Size: word or long

Action: the specified registers are moved to or from
memory. The registers are denoted by a list, such
as D0—3/A0/A3, 'adjacent' registers separated by
'-'s, and others separated by '/'. The order of
the registers in the list does not matter, as it
is determined by the processor.

In memory to register operations, the memory con-
tents are transferred into registers starting at
the address and working up to higher addresses,
in the order D0 to D7, then A0 to A7. If the
source is specified using post-increment
addressing, .the final value of the address
register will be the address of the last register
loaded plus two. For word operations the value of
each register is sign-extended to 32 bits.

In register to memory commands, the action
depends on the addressing mode used. For most of
them, the register values get transferred to
memory starting at the given address and working
up, in the same order as above. The exception is
pre-decrement addressing. With that, the
registers get transferred starting at the given
address minus two, and then downwards. The final
value of the address register is the address of
the final word stored. The order is the reverse
to that given, namely A7 to A0, then D7 to D0.

Condition Codes: X N Z V C
- - - - -

Opcode: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 0 1 M/R 0 0 1 s m m m r r r
M/R — for register to memory, 1 for memory to

register
s — size, 0 word, 1 long
m — addressing mode
r — address register

this should be followed by an extra word defining which
registers are to be moved. Each bit is set if the
register is to be moved, else it is reset. The form of
the word depends on the addressing mode, and is:

122

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
A7 A6 A5 A4 A3 A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D0

except for pre-decrement, when the word is:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
D0 D1 D2 D3 D4 D5 D6 D7 A0 A1 A2 A3 A4 A5 A6 A7

Addressing modes:
Memory to register: MOVEM (address),(register)
 Mode mmm rrr
 (An) 010 reg no.
 (An)+ 011 reg no.
 n(An) 101 reg no.
 n(An,A/Dn) 110 reg no.
 nn.W 111 000
 nn.L 111 001
 n(PC) 111 010
 n(PC,A/Dn) 111 011
Register to Memory: MOVEM (registers),(address)
 Mode mmm rrr
 (An) 010 reg no.
 -(An) 100 reg no.
 n(An) 101 reg no.
 n(An,A/Dn) 110 reg no.
 nn.W 111 000
 nn.L 111 001

Notes: the primary use for this instruction is saving
and restoring registers from the stack, using
pre-decrement and post-increment addressing with
A7. The opcodes are:

$48E7 for MOVEM.L (registers),—(A7)
$4CDF for MOVEM.L (A7)+,(registers)

both being followed by a word defining the
register list.

123

MOVEP — MOVE PERIPHERAL

Mneumonics: MOVEP Dx,(d)(Ay) and
MOVEP (d)(Ay),Dx

Size: word or long
Action: this is for transferring data to and from memory,

using only the even or odd numbered addresses.
The highest order byte is transferred first. This
is intended for use in other processors in the
68000 series, so that they can use 8 bit
peripheral devices more easily.

Condition Codes: X N Z V C
- - - - -

Opcode: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 x x x 1 om s 0 0 1 y y y
x — data register number
om — 0 for memory to register, 1 for register to

memory
s — size, 0 word, 1 long
y — address register number
This should be followed by an extra word
containing the displacement to be added to the
address registers.

Notes: because the 68008 has an 8 bit data bus anyway,
this instruction is redundant on the QL.

MOVEQ — MOVE QUICK

Mneumonics: MOVEQ #(d),Dx
Size: long only
Action: Action: the immediate data is transferred into

the data register. The range of values of the
data is 0-$7F and - $FFFFFFFF to $FFFFFF80
inclusive. It is faster and takes less bytes than
its MOVE equivalent.

Condition Codes: X N Z V C
- * * 0 -

Opcode: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 x x x 0 d d d d d d d d
x — data register number
d — 8 bit immediate data, sign extended to 32 bits

124

MULS — SIGNED MULTIPLICATION

Mneumonics: MULS (address),Dx
Size: word only
Action: the word contents of the address is multiplied by

the word contents of the register, and the 32 bit
result put into the data register. The
multiplication is done using signed arithmetic.

Condition Codes: X N Z V C
- * * 0 0

Opcode: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 0 x x x 1 1 1 m m m r r r

x — data register number
m — addressing mode
r — address register

Addressing modes: Mode mmm rrr
 Dn 000 reg no.
 (An) 010 reg no.
 (An)+ 011 reg no.
 -(An) 100 reg no.
 n(An) 101 reg no.
 n(An,A/Dn) 110 reg no.
 nn.W 111 000
 nn.L 111 001
 n(PC) 111 010
 n(PC,A/Dn) 111 011
 #nn 111 100

Notes: all addressing modes are allowed, except address
register direct. An overflow or a carry cannot
occur because it is impossible to multiply two 16
bit numbers together and get a result greater
than 32 bits. This is another instruction that
takes a varying amount of time to execute,
depending on the patterns of bits within the
contents of the address.

125

MULU — UNSIGNED MULTIPLICATION

Mneumonics: MULU (address),Dx
Size: word only
Action: the word contents of the address is multiplied by

the word contents of the register, and the 32 bit
result put into the data register. The
multiplication is done using signed arithmetic.

Condition Codes: X N Z V C
- * * 0 0

Opcode: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 0 x x x 0 1 1 m m m r r r

x — data register number
m — addressing mode
r — address register

Addressing modes: Mode mmm rrr
 Dn 000 reg no.
 (An) 010 reg no.
 (An)+ 011 reg no.
 -(An) 100 reg no.
 n(An) 101 reg no.
 n(An,A/Dn) 110 reg no.
 nn.W 111 000
 nn.L 111 001
 n(PC) 111 010
 n(PC,A/Dn) 111 011
 #nn 111 100

Notes: all addressing modes bar address register direct
are allowed. The time taken for this to execute
is propor- tional to the number of set bits in
the contents of the address.

126

NBCD — NEGATE BINARY CODED DECIMAL WITH EXTEND

Mneumonics: NBCD (address)
Size: byte only
Action: the BCD pair in the address is ten's-complemented,

and the state of the extend flag subtracted too, ie
the calculation 0-address contents-X is done, in
base 10.

Condition
Codes:

X N Z V C
* ? * ? *
Z — reset if the result is non-zero, else unchanged
C — set if a decimal carry was generated

Opcode: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 0 1 0 0 0 0 0 m m m r r r
m — addressing mode
r — address register

Addressing modes:
 Mode mmm rrr
 Dn 000 reg no.
 (An) 010 reg no.
 (An)+ 011 reg no.
 -(An) 100 reg no.
 n(An) 101 reg no.
 n(An,A/Dn) 110 reg no.
 nn.W 111 000
 nn.L 111 001

127

NEG — NEGATE

Mneumonics: NEG (address)
Size: byte, word or long
Action: the contents of the address are subtracted from 0,

and the result stored in the address. In other
words, the data is two's-complemented.

Condition
Codes:

X N Z V C
* * * * *

Opcode: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 0 0 1 0 0 s s m m m r r r
s — size, 00 byte, 01 word, 10 long
m — addressing mode
r — address register

Addressing modes:
 Mode mmm rrr
 Dn 000 reg no.
 (An) 010 reg no.
 (An)+ 011 reg no.
 -(An) 100 reg no.
 n(An) 101 reg no.
 n(An,A/Dn) 110 reg no.
 nn.W 111 000
 nn.L 111 001

Notes: Do not confuse this one with the NOT instruction

128

NEGX — NEGATE WITH EXTEND

Mneumonics: NEGX (address)
Size: byte, word or long
Action: the contents of the address are subtracted from 0,

and the state of the extend bit also subtracted, ie
the operation 0-contents of address-X.

Condition
Codes:

X N Z V C
* * * * *

Opcode: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 0 0 0 0 0 s s m m m r r r
s — size, 00 byte, 01 word, 10 long
m — addressing mode
r — address register

Addressing modes:
 Mode mmm rrr
 Dn 000 reg no.
 (An) 010 reg no.
 (An)+ 011 reg no.
 -(An) 100 reg no.
 n(An) 101 reg no.
 n(An,A/Dn) 110 reg no.
 nn.W 111 000
 nn.L 111 001

Notes: this is the base 16 equivalent of NBCD.

NOP — NO OPERATION

Mneumonics: NOP
Size: n/a
Action: nothing is done. The next instruction is executed

after a very short delay.
Condition
Codes:

X N Z V C
- - - - -

Opcode: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 0 1 1 1 0 0 1 1 1 0 0 0 1 =$4371

Notes: this is usually used in timing delays, and for
removing instructions when debugging.

129

NOT — COMPLEMENT

Mneumonics: NOT (address)
Size: byte, word or long
Action: the contents of the address are complemented, and

placed back in the address, ie the state of each bit
is inverted.

Condition
Codes:

X N Z V C
- * * 0 0

Opcode: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 0 0 1 1 0 s s m m m r r r
s — size, 00 byte, 01 word, 10 long
m — addressing mode
r — address register

Addressing modes:
 Mode mmm rrr
 Dn 000 reg no.
 (An) 010 reg no.
 (An)+ 011 reg no.
 -(An) 100 reg no.
 n(An) 101 reg no.
 n(An,A/Dn) 110 reg no.
 nn.W 111 000
 nn.L 111 001

130

OR — LOGICAL OR

Mneumonics: OR (address),Dx and OR Dx,(address)
Size: byte, word or long
Action: the two parameters are logically Ored, and the

result placed back in either the data register
(former mnemonic) or the address (latter mnemonic).

Condition
Codes:

X N Z V C
- * * 0 0

Opcode: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 0 0 x x x om s s m m m r r r
x — data register number
om — 0 for OR (address),Dx

1 for OR Dx, (address)
s — size, 00 byte, 01 word, 10 long
m — addressing mode
r — address register

Addressing modes:
 Mode mmm rrr
 Dn 000 reg no. (not Dx,(address))
 (An) 010 reg no.
 (An)+ 011 reg no.
 -(An) 100 reg no.
 n(An) 101 reg no.
 n(An,A/Dn) 110 reg no.
 nn.W 111 000
 nn.L 111 001
 n(PC) 111 010 (not Dx,(address))
 n(PC,A/Dn) 111 011 (not Dx,(address))
 #nn 111 100 (not Dx,(address))

Notes: there are other forms of logical OR — ORI, for immediate
data, and OR to CCR and SR

131

ORI — LOGICAL OR IMMEDIATE

Mneumonics: ORI #(d),(address)
Size: byte, word or long
Action: the immediate data is logically Ored with the

contents of the address, and the result placed back
in the address. The size of the data matches the
size of the instruction.

Condition
Codes:

X N Z V C
- * * 0 0

Opcode: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 0 0 0 s s m m m r r r

s — size, 00 byte, 01 word, 10 long
m — addressing mode
r — address register
The opcode should be followed by one or two words
containing the immediate data. For byte operations,
the data should be in the lower byte of the extra
word.

Addressing modes:
 Mode mmm rrr
 Dn 000 reg no. (not Dx,(address))
 (An) 010 reg no.
 (An)+ 011 reg no.
 -(An) 100 reg no.
 n(An) 101 reg no.
 n(An,A/Dn) 110 reg no.
 nn.W 111 000
 nn.L 111 001

132

ORI TO SR/CCR — LOGICAL OR IMMEDIATE TO THE STATUS

Mneumonics: ORI #(d),CCR and ORI #(d),SR
Size: byte (for CCR) or word (for SR)
Action: the immediate data is logically Ored with part or

all of the status register, and the result placed
back into the same part of the SR.
ORI to the SR is a privileged instruction.

Condition
Codes:

X N Z V C
* * * * *

The state of the condition codes depends on the
combination of the immediate data and its previous
values.

Opcode: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 0 0 0 0 x 1 1 1 1 0 0

x — 0 for CCR (byte), 1 for SR (word)
followed by an extra word containing the immediate
data (in the low byte if CCR).

133

PEA — PUSH EFFECTIVE ADDRESS

Mneumonics: PEA (address)
Size: long only
Action: the value of (address) is calculated (in the same

way as LEA), then the long word pushed on to the
stack. It is equivalent to the instructions
LEA (address),Ax
MOVEA.L Ax,—(A7)

Condition
Codes:

X N Z V C
- - - - -

Opcode: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 0 1 0 0 0 0 1 m m m r r r

m — addressing mode
r — address register

Addressing modes:
 Mode mmm rrr
 (An) 010 reg no.
 n(An) 101 reg no.
 n(An,A/Dn) 110 reg no.
 nn.W 111 000
 nn.L 111 001
 n(PC) 111 010
 n(PC,A/Dn) 111 011

Notes: This is a seldom used instruction.

RESET — RESET

Mneumonics: RESET
Size: n/a
Action: a RESET signal is sent from the processor to other

external devices. This is a privileged instruction.
The processor itself is not reset.

Condition
Codes:

X N Z V C
- - - - -

Opcode: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 0 1 1 1 0 0 1 1 1 0 0 0 0 =$4E70

Notes: because of the hardware within it, this instruction
does in fact cause a system reset on the QL.

134

ROL/R — ROTATE LEFT AND RIGHT

Mneumonics: ROL Dx,Dy and ROL #(d),Dx and ROL (address) and
ROR Dx,Dy and ROR #(d),Dx and ROR (address)

Size: byte, word or long (word only for (address))

Action: a rotate is one in which the operand has a number
of bits rotated to the left or right, with the
end bit rotating around to the other end. This is
best illustrated by a diagram (see Figure 8.3).
The number of rotates and the item rotated can be
specified in a number of ways: using Dx,Dy
register Dy is rotated by the value of Dx,
modulus 64. Using #(d),Dx register Dx is rotated
a number of times depending on the immediate
data, from 1 to 8. Using just (address), the
contents of the

ROL

Rotate C data
left

ROR

Rotate data C
right

Figure 8.3: Rotates
address are rotated once only, and the size is
always word. Only the relevant part of the
parameter is rotated, depending on the size.

Condition Codes: X N Z V C
* * * 0 *

N — set if the highest bit of the result is set
Z — set if the result is zero, else cleared
C — set according to Figure 8.3, or unaffected

by a zero rotate count.
Opcodes: for #(d),Dx:

5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 0 x x x 1/r s s 1 1 1 y y y
x — first register (count register) number
1/r — direction, 0 for right, 1 for left
s — size, 00 byte, 01 word, 10 long
y — second register number (the one rotated)
for #(d),Dx:
5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 0 d d d 1/r s s 0 0 1 x x x

135

d — immediate data, from 0-7, 0 gives a rotate
count of 8

1/r — direction 0 for right, 1 for left
s — size, 00 byte, 01 word, 10 long
x — data register number

for (address) (ie memory rotates):
5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 0 0 1 1 1/r 1 1 m m m r r r

I/r — direction, 0 for right, 1 for left
m — addressing mode
r — address register

Addressing modes: (for memory rotates only)
 Mode mmm rrr
 (An) 010 reg no.
 (An)+ 011 reg no.
 -(An) 100 reg no.
 n(An) 101 reg no.
 n(An,A/Dn) 110 reg no.
 nn.W 111 000
 nn.L 111 001

136

ROXL/R — ROTATE LEFT AND RIGHT WITH EXTEND

Mneumonics: ROXL Dx,Dy and ROXL #(d),Dx and ROXL (address)
and ROXR Dx,Dy and ROXR #(d),Dx and ROXR (address)

Size: byte, word or long (word only for (address))

Action: this is similar to ROL and ROR, but the Extend
flag is used instead of the Carry flag, as in
Figure 8.4. The number of rotates and the item
rotated can be specified in a number of ways.
Using Dx,Dy, register Dy is rotated by the value
of Dx, modulus 64. Using #(d),Dx, register Dx is
rotated a number of times depending on the
immediate data, from 1 to 8. Using just
(address), the contents of the address are
rotated once only, and the size is always word.
Only the relevant part of the parameter is
rotated, depending on the size.

ROXL X

Rotate with data
extended left C

ROXR C

Rotate with data
extended right X

Figure 8.4: Rotates with Extend.
address are rotated once only, and the size is
always word. Only the relevant part of the
parameter is rotated, depending on the size.

Condition Codes: X N Z V C
* * * 0 *

X — set according to the diagram, or unaffected
by a zero rotate count

N — set if the highest bit of the result is set
Z — set if the result is zero, else cleared
C — set according to the diagram, or unaffected

by a zero rotate count

Opcodes: for #(d),Dx:
5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 0 x x x 1/r s s 0 1 1 y y y

137

x — first register (count register) number
1/r — direction, 0 for right, 1 for left
s — size, 00 byte, 01 word, 10 long
y — second register number (the one rotated)

for #(d),Dx:
5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 0 d d d 1/r s s 0 1 0 x x x

d — immediate data, from 0-7, 0 gives a rotate
count of 8

1/r — direction 0 for right, 1 for left
s — size, 00 byte, 01 word, 10 long
x — data register number

for (address) (ie memory rotates):
5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 0 0 1 0 1/r 1 1 m m m r r r

1/r — direction, 0 for right, 1 for left
m — addressing mode
r — address register

Addressing modes: (for memory rotates only)
 Mode mmm rrr
 (An) 010 reg no.
 (An)+ 011 reg no.
 -(An) 100 reg no.
 n(An) 101 reg no.
 n(An,A/Dn) 110 reg no.
 nn.W 111 000
 nn.L 111 001

138

RTE — RETURN FROM EXCEPTION

Mneumonics: RTE

Size: n/a

Action: the top word on the stack is removed and put in
the status register, then a long word pulled from
the stack and execution commences at that
address. This is for returning from exception-
handling routines, and is a privileged
instruction.

Condition Codes: X N Z V C
* * * * *

The state of the condition codes depends on the
top word pulled from the stack.

Opcode: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 0 1 1 1 0 0 1 1 1 0 1 0 1 =$4E75

Notes: this instruction does not see which exception
caused it, so for address errors and bus errors
it is up to the programmer to remove the four
extra words placed on the stack before doing the
RTE.

139

RTR — RETURN AND RESTORE

Mneumonics: RTR

Size: n/a

Action: the word on the stack is removed, and the lower
byte put in the status register. Then a long word
is removed from the stack, and execution
commences at the address. As the high byte of the
SR is not altered, this is not a privileged
instruction.

Condition Codes: X N Z V C
* * * * *

The condition codes depend on the word removed
from the stack.

Opcode: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 0 1 1 1 0 0 1 1 1 0 1 1 1 =$4E77

Notes: this instruction is normally used for leaving
subroutines that originally saved the state of
the SR on the stack with MOVE SR,—(A7).

RTS — RETURN FROM SUBROUTINE

Mneumonics: RTS

Size: n/a

Action: the long word on the stack is pulled, and a jump
made to it.

Condition Codes: X N Z V C
- - - - -

Opcode: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 0 1 1 1 0 0 1 1 1 0 1 1 1 =$4E77

Notes: a very common instruction indeed, especially for
returning to BASIC after a CALL command.

140

SBCD — SUBTRACT BINARY CODED DECIMAL
Mnemonic: SBCD Dx,Dy and SBCD —(Ax),—(Ay)

Size: byte only

Action: the first BCD parameter is subtracted from the
second in base 10, then the state of the extend
flag subtracted, and the result placed in the
second. The parameters can be expressed either as
data registers, or by address register pre-
decrement addressing.

Condition codes: X N Z V C
* ? * ? *

Z — zeroed if the result is zero, else unchanged
C — set if a decimal carry was generated
X — same as C

Opcode: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 0 0 y y y 1 0 0 0 0 R/M x x x

y — first data register number
R/M 0 for Dx,Dy, 1 for —(Ax),—(Ay)
x — second register number

141

SCC — SET IF CONDITION

Mnemonic: Scc (address)
where 'cc' is a condition

Size: byte only
Action: if the specified condition is true, then the

contents of the address will be set to $FF, else
it will be set to $00.

Condition codes: X N Z V C
- - - - -

Opcode: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 c c c c 1 1 m m m r r r

c — condition, one of:
0000 T
0001 F
0010 HI
0011 LS
0100 CC
0101 CS
0110 NE
0111 EQ
1000 VC
1001 VS
1010 PL
1011 MI
1100 GE
1101 LT
1110 GT
1111 LE

m — addressing mode
r — address register

142

Addressing modes: Mode mmm rrr
 Dn 000 reg no.
 (An) 010 reg no.
 (An)+ 011 reg no.
 n(An) 101 reg no.
 n(An,A/Dn) 110 reg no.
 nn.W 111 000
 nn.L 111 001
 n(PC) 111 010
 n(PC,A/Dn) 111 011

Notes: the instruction SF (address) will always zero the
address, and ST (address) will always set it to
SFF. When accessing memory, the memory is always
read before being written to.

143

STOP — STOP

Mneumonics: STOP #(d)
Size: word only
Action: the immediate data is put into the status register,

the program counter is incremented to point to the
next instruction, and the processor literally stops.
As soon as any exception is required, the processor
will resume — the normal exception to cause this is
an interrupt, but if the trace bit is set prior to
the STOP, the processor will re-start. The other way
of re-starting a stopped processor is by a signal
applied to the RESET pin, which will cause a
complete processor reset. This instruction is
privileged.

Condition
Codes:

X N Z V C
* * * * *
The state of the condition codes depends on the
immediate data in the instruction.

Opcode: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 0 1 1 1 0 0 1 1 1 0 0 1 0 =$4E72

followed by one extra word, containing the immediate
data.

Notes: on the QL, this instruction will permanently halt
the processor unless either the tracing is enabled,
or the interrupt mask is less than 3.

144

SUB — SUBTRACT

Mneumonics: SUB (address),Dx and SUB Dx,(address)
Size: byte, word or long
Action: the first parameter is subtracted from the second,

and the result placed back in the second. Each
parameter may be either a data register, or an
addressing mode.

Condition
Codes:

X N Z V C
* * * * *
The state of the condition codes depends on the
immediate data in the instruction.

Opcode: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 0 1 x x x om s s m m m r r r

x — data register number
om — 0 for SUB (address),Dx

1 for SUB Dx,(address)
s — size, 00 byte, 01 word, 10 long
m — addressing mode
r — address register

Addressing modes:

 Mode mmm rrr
 Dn 000 reg no. (not Dx,(address), use (address),Dx)
 An 001 reg no. (not Dx,(address) (use SUBA) and not byte)
 (An) 010 reg no.
 (An)+ 010 reg no.
 -(An) 010 reg no.
 n(An) 101 reg no.
 n(An,A/Dn) 110 reg no.
 nn.W 111 000
 nn.L 111 001
 n(PC) 111 010 (not Dx,(address))
 n(PC,A/Dn) 111 011 (not Dx,(address))
 #nn 111 100 (not Dx,(address))

Notes: there are four other types of SUB — SUBA, for
address registers, SUBI, for immediate data, SUBQ,
for quick subtractions, and SUBX, for extended
subtraction.

145

SUBA — SUBTRACT ADDRESS

Mneumonics: SUBA (address),Ax
Size: word or long
Action: the contents of the address are subtracted from the

given address register, and the result put back in
the address register. For word sizes, both the
address and address registers' contents are sign-
extended to 32 bits before the subtraction, giving a
32 bit result.

Condition
Codes:

X N Z V C
- - - - -

Opcode: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 0 1 x x x s 1 1 m m m r r r

x — data register number
s — size, 0 word, 1 long
m — addressing mode
r — address register

Addressing modes:

 Mode mmm rrr
 Dn 000 reg no.
 An 001 reg no.
 (An) 010 reg no.
 (An)+ 010 reg no.
 -(An) 010 reg no.
 n(An) 101 reg no.
 n(An,A/Dn) 110 reg no.
 nn.W 111 000
 nn.L 111 001
 n(PC) 111 010
 n(PC,A/Dn) 111 011
 #nn 111 100

Notes: all addressing modes are allowed. None of the
condition codes are affected by this instruction,
unlike all other subtract instructions.

146

SUBI — SUBTRACT IMMEDIATE

Mneumonics: SUBI #(d),(address)
Size: byte, word or long
Action: the immediate data is subtracted from the contents

of the address. The size of the data equals the size
of the instruction.

Condition
Codes:

X N Z V C
* * * * *

Opcode: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 s s m m m r r r

s — size, 00 byte, 01 word, 10 long
m — addressing mode
r — address register
This has to be followed by one or two extra words,
containing the immediate data. For byte-sized
operations, the lower byte of the extra word
contains the data.

Addressing modes:

 Mode mmm rrr
 Dn 000 reg no.
 An 001 reg no.
 (An) 010 reg no.
 (An)+ 010 reg no.
 -(An) 010 reg no.
 n(An) 101 reg no.
 n(An,A/Dn) 110 reg no.
 nn.W 111 000
 nn.L 111 001

Notes: address register direct is not allowed, you can use
SUBA instead.

147

SUBQ — SUBTRACT QUICK

Mneumonics: SUBQ #(d),(address)
Size: byte, word or long
Action: the immediate data is subtracted from the contents

of the address. The data can have a range of 1 to 8
inclusive. It is much faster and more memory
efficient than the equivalent SUBI instruction. For
word sized SUBA, both parameters are sign extended
to 32 bits before the operation.

Condition
Codes:

X N Z V C
* * * * *
There is no effect on the condition codes for SUBQ #
(d), Ax.

Opcode: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 s s m m m r r r

x — data, a value of 0 gives a SUBQ of 8
s — size, 00 byte, 01 word, 10 long
m — addressing mode
r — address register

Addressing modes:

 Mode mmm rrr
 Dn 000 reg no.
 An 001 reg no.
 (An) 010 reg no.
 (An)+ 010 reg no.
 -(An) 010 reg no.
 n(An) 101 reg no.
 n(An,A/Dn) 110 reg no.
 nn.W 111 000
 nn.L 111 001

148

SUBX — SUBTRACT WITH EXTEND

Mneumonics: SUBX Dx,Dy and SUBX —(Ax),—(Ay)
Size: byte, word or long
Action: the first parameter is subtracted from the second,

then the state of the extend flag subtracted, and
the result stored in the second. Only two forms of
parameters are allowed — data register direct, and
address register indirect with pre-decrement.

Condition
Codes:

X N Z V C
* * * * *
x — data register number

Opcode: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 0 1 y y y 1 s s 0 0 R/M x x x

y — second register number
s — size, 00 byte, 01 word, 10 long
R/M — 0 for Dx,Dy, 1 for —(Ax),—(Ay)
x — first register number

SWAP — SWAP HIGH AND LOW WORDS

Mneumonics: SWAP Dx
Size: n/a
Action: the low word of the data register and the high word

are swapped over.
Condition
Codes:

X N Z V C
- * * 0 0

Z — set if the whole register is 0
N — set if bit 31 of the result is set

Opcode: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 0 1 0 0 0 0 1 0 0 0 x x x

x — data register number
Notes: this can be very useful at times, especially if the

register holds two word quantities, which can be
swapped around for different word-sized operations,
as the high word of registers is not affected by
them.

149

TAS — TEST AND SET

Mneumonics: TAS (address)
Size: byte only
Action: the byte contents of the address are read, the

condition codes set accordingly, and then bit 7 of
the address contents is set.

Condition
Codes:

X N Z V C
- * * 0 0

Opcode: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 0 1 0 1 0 1 1 m m m r r r

m — addressing mode
r — address register

Addressing modes:

 Mode mmm rrr
 Dn 000 reg no.
 (An) 010 reg no.
 (An)+ 010 reg no.
 -(An) 010 reg no.
 n(An) 101 reg no.
 n(An,A/Dn) 110 reg no.
 nn.W 111 000
 nn.L 111 001

Notes: this instruction is carried out by the hardware in
an indivisible way, and is intended for use in
multi- processor applications, for setting
semaphores to handshake between processors. It is,
however, not required on the QL for communicating
with the 8049 IPC.

150

TRAP — TRAP

Mneumonics: TRAP #(number)
Size: n/a
Action: if the overflow (V) flag is set, an exception will

occur, using vector number 7.
Condition
Codes:

X N Z V C
- - - - -

Opcode: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 0 1 1 1 0 0 1 1 1 0 1 1 0

x — trap number, 0 to 15

Notes: trap-handling on the QL is covered in detail in
Chapter 6, but to recap traps 0 to 4 are QDOS calls,
and 5 to 15 can be defined by the programmer.

TRAPV — TRAP IF OVERFLOW

Mneumonics: TRAPV
Size: n/a
Action: the trap instruction includes a parameter from 0 to

15 inclusive, and causes an exception when executed.
The vector taken for the exception depends on the
number of the trap, namely 32+n, where n is the trap
number.

Condition
Codes:

X N Z V C
- - - - -

Opcode: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 0 1 1 1 0 0 1 1 1 0 1 1 0 $4E76

Notes: on the QL, the exception is usually ignored, but can
be user-defined

151

TST — TEST

Mneumonics: TST (address)
Size: byte, word or long
Action: the contents of the address are compared to 0, and

some of the condition codes altered.
Condition
Codes:

X N Z V C
- * * 0 0

Opcode: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 0 1 0 1 0 s s m m m r r r

s — size, 00 byte, 01 word, 10 long
m — addressing mode
r — address register

Addressing modes:
 Mode mmm rrr
 Dn 000 reg no.
 (An) 010 reg no.
 (An)+ 010 reg no.
 -(An) 010 reg no.
 n(An) 101 reg no.
 n(An,A/Dn) 110 reg no.
 nn.W 111 000
 nn.L 111 001

Notes: with QDOS system calls, it is usual for DO to
contain a negative number if an error has occurred,
else it is 0 if there were no errors. The easiest
(and fastest) way of testing it is by:

TST.B DO

and then you can BEQ if it was OK, or BNE if it was
not.

152

UNLK — UNLINK

Mneumonics: UNLK Ax
Size: n/a
Action: this is the opposite of the LINK instruction. A7 is

loaded with the address register, and the address
register loaded with the next long word pulled from
the stack.

Condition
Codes:

X N Z V C
- - - - -

Opcode: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 0 1 1 1 0 0 1 0 1 1 x x x

x — address register number

Notes: as with LINK, this is an advanced command and will
not be discussed further here.

153

Chapter 9 The Disassembler

When I began hand coding on the QL, I found I needed a reliable way
of checking that I had made no mistakes. I also needed to inspect
the ROM, particularly the exception-handling routines, and the
obvious solution to both problems was to write a disassembler.

A disassembler is the opposite of an assembler — it converts a
section of memory from numbers back into recognisable instructions.
For speed and ease of debugging, it was written initially in SuperB
ASIC, but I have since converted it to machine code. In this
chapter I shall explain the method, give the full BASIC listing,
and give guidelines for converting it into 68008 instructions.

Disassemblers for older processors tend to be easy things to write
— there are usually a fixed number of instructions, such as 256 or
512, anda big data table along with a few extra lines is usually
sufficient. However, on the 68008 life is rather harder, as there
are many thousands of different instructions, because of the
different addressing modes. Instead of using a huge data table, a
small one can be used, and then lines added to work out the
addressing modes used, and convert them to instructions.

The algorithm

The most important part of the algorithm is the 'search for the
opcode type' table. As can be seen from Chapter 8, each instruction
is based on a 16 bit word, with certain bits fixed, and others
variable. The fixed bits determine the basic instruction, while the
variable ones are usually things like addressing modes and data.
There are bound to be other ways of doing this, but I used a table
of about 70 different entries, each consisting of four items — the
fixed bits of the opcode, a 'mask' showing which of the bits are
fixed, a string giving the first part of the mnemonic, and finally
a number from 0 to 31 giving the 'type'. For example: the
instruction JMP has the following opcode:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 0 1 1 1 0 1 1 m m m r r r

Bits 6 through 15 are fixed, while bits 0 to 5 vary, according to
the addressing mode used. This is represented in the table by the
entry:

8410 DATA 20160, 65472, "JMP .",12

154

Chapter 9 The Disassembler

It is a little clearer if you convert the numbers into hex and
binary thus:

20160 $4ECO 0100 1110 1100 0000
65472 $FFCO 1111 1111 1100 0000

The first word contains the fixed bit, with the variable bits set
to 0. The second word has its bits set if the corresponding bit is
fixed in the opcode, else the bit is reset. The string 'JMP' is
the start of the instruction (with a full stop added for reasons
to be explained later), and 12 denotes the 'type'. My
investigations initially made me think there were 32 different
types of instruction. By type I mean that different mnemonics
decode the same way, except for their start — For example: another
type 12 instruction is JSR, which you can see from its opcode
format. After some time, I found I could eliminate some types
further, so that now there are around 28 at the last count. A bit
more work could probably reduce it further, but I did not feel it
was necessary.

Some of the BASIC procedures and functions are not as efficient as
they could be. This is because the program was written and
debugged on an early version of the QL (version FB to be exact),
which suffered from a very bug-ridden BASIC. It was particularly
sensitive to local variables and FOR loops, which accounts for
some of the quirks you may find in the listing. As it was written
on the first QL variant, it has the advantage of working on all
the later models (I hope!). Another problem was that I did not
originally realise that the functions PEEK_W and PEEK_L gave
signed results, so the procedure POS was written to ensure that
certain operations gave positive results.

Now, the full listing. As with all programs, you should type it in
in stages, saving it as you go along in case of system failure,
power cuts, someone unplugging you to plug in their hairdryer,
etc. I made it as 'structured' as I could, though a couple of the
dreaded GOTOs still remain! When I remembered I used leading
spaces to indent lines for clarity.

155

Chapter 9 The Disassembler

Listing 9.1: The disassembler

1 CLS: PRINT " DISSASSEMBLER"\\
2 PRINT " (c) Andrew Pennell i984"
5 nop=72: DIM aplist (nop,3),op$(nop,i2)
6 RESTORE 8000
7 FOR i=1 TO nop:READ oplist(i,3) ,oplist(i,2):READ oplist(i,3)
10 INPUT "Start address ($ for hex) ";a$:IF a$="" THEN GO TO 10
11 INPUT "Output stream (normally 1) ";strm: PRINT #strm
15 IF a$(1)="$" THEN dec(a$(2 TO)):pc=dp: ELSE p=a$
20 diss(pc)
30 IF INKEY$=" " THEN GO TO 10:ELSE GO TO 20
100 DEFine FuNction h1$(a)
110 RETurn CHR$(48+a+7*(a>9))
120 END DEFine
130 DEFine FuNction h2$(a)
150 RETurn h1$(a DIV 256)&h2$(a MOD 256)
160 END DEFine
170 DEFine FuNction HEX$(b)
175 LOCal a,h$
177 a=pos(b):IF a>32767 THEN a=a-32768
180 h$=h2$(a DIV 256)&h2$(a MOD 256)
185 IF pos(b)>32767 THEN h$(1)=h1$(h$(1)+8)
187 RETurn h$
190 END DEFine
200 DEFine FuNction band(x,y)
210 LOCal a,b,c,d
220 a=INT(pos(x)/32768):b=INT(pos(y)/32768)
230 c=sml (pos(x)):d=sml (pos(y))
240 RETurn 32768*(a&&b)+(c&&d)
250 END DEFine
260 DEFine FuNction sml(z)
270 RETurn z-32768*INT(z/32768)
280 END DEFine
300 DEFine PROCedure dec(a$)
310 LOCal s,t,q
320 t=0
330 a=LEN(a$)
340 s=CODE(a$(q))-48:IF s>22 THEN s=s-32
345 IF s>9 THEN s=s-7
350 t=t+s*16^(LEN(a$)-q)
360 q=q-1: IF q>0 THEN GO TO 340
365 dd=t
370 RETurn
380 END DEFine
400 DEFine FuNction BHEX$(a)
410 LOCal h1,h2
420 h1=INT(a/65536):h2=a-65536*h1
430 RETurn HEX$(h1)&HEX$(h2)

156

Chapter 9 The Disassembler

440 END DEFine
450 DEFine FuNction pos(a)
460 IF a<0 THEN RETurn 65536+a:ELSE RETurn a
470 END DEFine
500 DEFine PROCedure reglist(x,t$)
505 LOCal bit
510 IF x=0 THEN RETurn
520 bit=7
530 IF NOT(x&&(2^bit)) THEN GO TO 650
540 p$=p$&t$&(7-bit)
550 IF bit=0 THEN p$=p$&"/":GO TO 650
560 bit=bit-1:IF NOT(x&&(2^bit)) THEN p$=p$&",":GO TO 650
570 bit=bit-1
580 IF NOT(x&&(2^bit)) THEN p$=p$&"-"&t$&(6-bit)&"/": GO TO 650
590 IF bit=0 THEN p$=p$&"-"&t$&"7/":GO TO 650
600 GO TO 570
650 IF bit=0 THEN p$=p$(1 TO LEN (p$)-1): RETurn
660 bit=bit-1
665 GO TO 530
670 END DEFine ine
680 DEFine FuNction back (a)
690 LOCal b
700 b=0
710 FOR i=0 TO 7:IF a&&(2^(7-i)) THEN b=b+2^i
720 RETurn b
730 END DEFine
1000 DEFine PROCedure diss(start)
1010 pc=start:op=PEEK_W(pc):pc=pc+2+mem=start:IF op<0 THEN
op=op+65536
1015 PRINT #strm;BHEX$(start);" "
1022 i=0
1030 REPeat getlp:s=i+1:IF band(op,oplist(i,2))=oplist(i,1) THEN
EXIT getlp
1040 p$=op$(i):type=oplist(i,3)
1060 do_op(type)
1090 FOR i=mem TO pc-1
1100 PRINT #strm;h2$(PEEK(i));
1115 FOR i=pc-mem TO 6:FPRINT #strm;" ";
1120 PRINT #strm;sp$
1130 END DEFine
1999 REMark eff addr calc
2000 DEFine PROCedure ea(amode)
2001 REMark req must a var
2010 SELect ON amode
2020 =0
2030 p$=p$&"D"®
2040 =1
2050 p$=p$&"A"®
2060 =2

157

Chapter 9 The Disassembler

2070 p$=p$&" (A"®&")"
2090 p$=p$&" (A"®&")+"
2100 =4
2110 p$=p$&"-(A"®&")"
2120 =5
2140 p$=p$&h2$(PEEK(pc))&h2$(PEEK(pc+1))&"(A"®&")"
2145 pc=pc+2
2150 =6
2160 byte=PEEK_W(pc):pc=pc+2
2170 d=band(byte,255)
2180 p$=p$&h2$(d):p$=p$&"(A"®&","
2190 IF byte<0 THEN
2200 p$=p$&"A"
2210 ELSE
2220 p$=p$&"D"
2230 END IF
2240 reg=INT(band(byte,7*4096)/(2^12))
2250 d=band(byte,2^11)
2260 IF d THEN
2270 p$=p$®&".L) "
2280 ELSE
2290 p$=p$&req&". W) "
2300 END IF
2320 =7
2330 REMark MODE 7S HERE
2340 SELect ON reg
2350 ON reg=0
2360 p$=p$&HEX$(PEEK_W(pc))
2370 pc=pc+2
2380 ON reg=1
2390 p$=p$&BHEX$(PEEK_L(pc))
2400 pc=pc+4
2410 ON reg=2
2420 byte=PEEK_W(pc)
2430 byte=byte+pc:pc=pc+2
2440 p$=p$&HEX$(byte)&" PC "
2450 ON reg=3
2460 byte=PEEK_W(pc)
2470 p$=p$&BHEX$(pc+comp2(PEEK(pc+1)))&"(PC,"
2480 pc=pc+2
2490 IF band(byte,2^15) THEN p$=p$&"A": ELSE p$=p$&"D"
2500 p$=p$(band(byte,7*4096)/4096)&"."
2510 IF band(byte,2^11) THEN p$=p$&"L": ELSE p$=p$&"W"
2600 ON reg=4
2620 p$=p$&"#"
2630 IF size=1 THEN p$=p$&h2$(PEEK(pc+1)):pc=pc+2
2640 IF size=2 THEN p$=p$&BHEX$(PEEK_L(pc)):pc=pc+4
2650 IF size=3 THEN p$=p$&HEX$(PEEK_W(pc)):pc=pc+2
2655 ON req=REMAINDER

158

Chapter 9 The Disassembler

2656 p$=p$&"?M7,R"®&"?"
2660 END SELect
2880 =3
3900 =REMAINDER
3910 p$=p$&"????"
3920 END SELect
3930 END DEFine ea
3940 DEFine PROCedure efad(op)
3950 reg=band(op,7):m=band(op,7*8)/8
3960 ea(m)
3970 END DEFine efad
4000 DEFine PROCedure do_ap(type)
4010 SELect ON type
4020 ON type=0
4200 ON type=2
4210 REMark **** 2 **OR,AND,SUB,ADD,II***
4220 size=band(op,192)/64:do_dot(size)
4230 p$=p$&"#"
4240 SELect ON size
4250 ON size=0:p$=p$&h2$(PEEK(pc+1)):pc=pc+2
4260 ON size=1,2:p$=p$&HEX$(PEEK_W(pc)):pc=pc+2
4270 END SELect
4280 IF size=2 THEN p$=p$&HEX$(PEEK_W(pc)):pc=pc+2
4290 p$=p$&","
4300 IF band (op,63)=60 THEN
4304 IF size=0 THEN p$=p$&"CCR":ELSE p$=p$&"SR"
4306 ELSE
4308 efad(op)
4310 END IF
4315 ON type=3
4325 REMark **** 3 **** MOVEP
4335 IF band(op,2^6) THEN p$=p$&"L ":ELSE p$=p$&"W "
4340 a$="D"&(band(op,7*2^9)/(2^9)):B$=HEX$
(PEEK_W(pc))&"(A"&band(op,7)&")"
4350 ON types=4
4355 REMark **** 4 **** Bxxx,Dn,ea
4360 bits(band(op,192)/64):size=0
4365 p$=p$&"D"&(band(op,7*2^9)/(2^9))&","
4370 efad(op)
4375 ON type=5
4380 REMark **** 5 **** Bxx,#d,ea
4385 bits(band(op,192)/64):size=0
4390 p$=p$&"#"&h2$(PEEK(pc+1))&","
4395 pc=pc+2:efad(op)
4500 ON type=6
4510 REMark **** 6 **MOVE
4535 size=band(op,2^13+2^12)/(2^12)
4540 efad(op):REMark source
4550 p$=p$&","

159

Chapter 9 The Disassembler

4560 reg=band(op,7*2^9)/(2^9)
4570 m=band(op,448)/(2^6)
4580 ea(m):REMark destination
4600 ON type=7
4610 REMark **** 7 **** STOP
4620 p$=p$&HEX$(PEEK_W(pc))
4630 pc=pc+2
4800 ON type=8
4810 REMark **** 8 **** SWAP,EXT,UNLk
4820 p$=p$&band(op,7)
4830 ON type=9
4840 REMark **** 9 **** LINK
4850 p$=p$&band(op,7)&",#"
4860 p$=p$&HEX$(PEEK_W(pc))
4870 pc=pc+2
5000 ON type=10
5010 REMark **** 10 **** MOVEAn, USP
5020 p$=p$&band(op,7)&",USP"
6100 ON type=11
6110 REMark **** 11 **** TRAP
6120 p$=p$&band(op,15)
6200 REMark
6210 ON type=12
6220 REMark **** 12 **** TST,JSR,JMP
6230 IF p$(LEN(p$))<>"." THEN
size=band(op,192)/64:do_dot(size): ELSE size=s2:p$=p$(1 TO LEN(p)-
1)
6250 efasd(op)
6255 ON type=13
6260 REMark **** 13 **** MOVE to CCR
6265 size=1:efad(op)
6270 p$=p$&",CCR"
6275 ON type=14
6280 REMark **** 14 **** MOVE to SR
6285 size=1:efad(op)
6290 p$=p$&",SR"
6300 ON type=15
6310 REMark **** 15 **** MOVEM
6320 size=1+band(op,2^6)/(2^6):do_dot(size)
6330 d1=back(PEEK(pc)):d2=back(PEEK(pc+1))
6335 pc=pc+2:efad(op):p$=p$&"/"
6340 reg_ist d1,"A": IF d1<>0 THEN p$=p$&"/"
6350 reglist d2,"D"
6405 ON type=16
6410 REMark **** 16 **** MOVEM#2
6415 size=i+band(op,2^6)/(2^6):do_dot(size)
6420 d1=PEEK(pe):d2=PEEK(pc+1):pc-pc+2
6430 reglist d1,"D":IF d1<>0 THEN p$=p$&"/"
6440 reglist d2,"A"

160

Chapter 9 The Disassembler

6450 p$=p$&" ,":efad(op)
6455 ON type=17
6460 REMark **** 17 **** MUL,CHE,DIV
6465 size=2:efad(op)
6470 reg=band(op,7*29)/(2^9)
6475 p$=p$&" ,D"®
6500 ON type=18
6510 REMark **** 18 **** LEA
6520 size=2
6530 efad(op)
6540 reg=band(op,7*2^9)/(2^9)
6550 p$=p$&" ,A"®
6555 ON type=19
6560 REMark **** 19 **** DBcc
6565 do_cond(band(op,7*2^8)/(2^8))
6570 p$=p$&"D"&band(op,7)&","
6575 p$=p$&BHEX$(pc+comp2_w(PEEK_W(pc)))
6580 pc=pc+2
6600 ON type=20
6610 REMark **** 20 **** Scc
6620 CON=band(op,7*2^8)/(2^8):do_cond(CON)
6630 efad(op)
6700 ON type=21
6710 REMark **** 21**** ADDQ,SUBQ
6720 size=band(op,192)/64:do_dot(size)
6730 d=band(op,7*2^9)/(2^9):d=d+8*(d=0):p$=p$&"#"&","
6750 efad(op)
6900 ON type=23
6910 REMark **** 23 **** BRA,Bcc,BSR
6920 CON=band(op,15*2^8)/(2^8)
6930 SELect ON CON
6940 ON CON=0:p$="BRA "
6950 ON CON=1:p$="BSR "
6960 ON CON=2 TO 5:do_cand(CON)
6970 END SELect
6980 byte=band(op,255)
6990 IF byte THEN
7000 p$=p$&BHEX$(pc+comp2(byte))
7010 ELSE
7020 p$=p$&BHEX$(pc+comp2_w(PEEK_W(pc)))
7030 pc=pc+2
7040 END IF
7050 ON type=24
7060 REMark **** 24 **** MOVEQ
7070 p$=p$&h2$(band(op,255))&" D"
7080 d=band(op,7*2^9)/2^9:p$=p$&d
7083 ON type=25
7086 REMark **** 25 **** Dx,Dy/-(Ay)
7088 IF p$(LEN(p$))="X" THEN do_dot(band(op,192)/64):ELSE

161

Chapter 9 The Disassembler

p$=p$&" "
7090 rx=band(op,7*2^9)/(2^9):ry=band(op,7)
7092 IF band(op,2^3) THEN
7094 p$=p$&"-(A"&ry&"),-(A"&rx&")"
7096 ELSE
7098 p$=p$&"D"&ry&",D"&rx
7099 END IF
7100 ON type=28
7110 REMark **** 28 **** CMPM
7120 size=band(op,3*2^6)/(2^6):do_dot(size)
7130 reg=band(op,7):p$=p$&" (A"®&")+(A"
7140 reg=band(op,7*2^9)/(2^9):p$=p$®&"(+"
7200 ON type=29
7210 REMark **** 29 **** CMP,CMPA,EOR
7220 om=band(op,7*64)/64:areg=band(op,7*2^9)/(2^9)
7230 SELect ON om
7240 ON om=3,7
7250 size=1+(om=7):p$="CMPA":do_dot(size)
7260 efad(op):p$=p$&",A"&areg
7270 ON om=0 TO 2
7280 size=om:p$="CMP":do_dot(size)
7290 efad(op):p$=p$&",D"&areg
7300 ON om=4 TO 6
7310 size=om&&3:p$="EOR":do_dot(size)
7320 p$=p$&"D"&areg&",":efad(op)
7330 END SELect
7340 ON type=22
7350 REMark **** 22 **** EXG
7360 om=band(op,248)/8:rx=band(op,7*2^9)/(2^9)
7370 ry=band(op,7)
7380 SELect ON om
7390 ON om=8:p$=p$&"D"&rx&",D"&ry
7400 ON om=9:p$=p$&"A"&rx&",A"&ry
7410 ON om=17:p$=p$&"D"&rx&",A"&ry
7420 ON om=REMAINDER :p$=p$&"??,??"
7430 END SELect
7500 ON type=30,31
7510 REMark **** 30,31 **** ADD,SUB ****
7520 size=band(op,192)/64
7540 areg=band(op,7*2^9)/(2^9)
7545 IF size<>3 THEN
7546 REMark *ADD*
7547 do_dot(size)
7550 d=band(op,2^8)
7560 IF NOT d THEN
7570 REMark ea,Dn
7580 efad(op)
7590 p$=p$&"D"&areg
7600 ELSE

162

Chapter 9 The Disassembler

7610 p$=p$&"D"&areg&","
7620 efad(op)
7630 END IF
7640 ELSE
7650 REMark *ADDA*
7662 size=1+NOT(NOT(band(op,2^8))):do_dot(size)
7665 efad(op)
7670 p$=p$&",A"&areg
7680 END IF
7700 ON type=32
7710 REMark **** 32 **** shifts&rots
7720 rot=band(op,24)/8
7730 SELect ON rot
7740 ON rot=0:p$="AS"
7750 ON rot=1:p$="LS"
7760 ON rot=2:p$="ROX"
7770 ON rot=3:p$="RO"
7780 END SELect
7790 IF band(op,2^8) THEN p$=p$&"L" :ELSE p$=p$&"R"
7800 size=band(op,192)/64
7810 IF size<>3 THEN
7820 REMark reg rot
7830 do_dot(size):d=band(op,7*2^9)/2^9:IF band(op,2^5) THEN
p$=p$&"D"&d:ELSE p$=p$&"#"&(d+8*(d=0))
7840 p$=p$&",D"&band(op,7)
7850 ELSE
7860 REMark memory rot
7870 efad(op)
7880 END IF
7900 =REMAINDER
7910 p$="dont know yet"
7920 END SELect
7930 RETurn
7940 END DEFine
8060 DATA 264,61752,"MOVEP.",3
8070 DATA 0,65280,"ORI",2
8080 DATA 512,65280,"ANDI",2
8090 DATA 1024,65280,"SUBI",2
8100 DATA 1536,85280,"ADDI",2
8110 DATA 2048,65280,"B",5
8120 DATA 2560,65280,"EORI",2
8130 DATA 3072,65280,"CMPI",2
8140 DATA 256,61696,"B",4
8150 DATA 4096,61440,"MOVE.B ",6
8160 DATA 8256,61888,"MOVEA.L ",6
8170 DATA 8192,61440,"MOVEL.L ",6
8180 DATA 12352,61888,"MOVEA.W ",6
8190 DATA 12288,61440,"MOVE.W ",6
8200 DATA 19196,65535,"IILLEGAL",0

163

Chapter 9 The Disassembler

8210 DATA 20080,65535,"RESET",0
8220 DATA 20081,65535,"NOP",0
8230 DATA 20082,65535,"STOP #",7
8240 DATA 20083,65535,"RTE",0
8250 DATA 20085,65535,"RTS",0
8260 DATA 20086,65535,"TRAPV",0
8270 DATA 20087,65535,"RTR",0
8280 DATA 18496,65528,"SWAP D",8
8290 DATA 18560,65528,"EXT.W D",8
8300 DATA 18624,65528,"EXT.L D",8
8310 DATA 20048,65528,"LINK A",9
8320 DATA 20056,65528,"UNLK A",8
8330 DATA 20064,65528,"MOVE.L A",10
8340 DATA 20072,65528,"MOVE.L USP A",8
8345 DATA 20032,65520,"TRAP #",11
8350 DATA 16576,65472,"MOVE.W SR,",12
8360 DATA 17600,65472,"MOVE.B ",13
8370 DATA 18112,65472,"MOVE.W ",14
8380 DATA 18432,65472,"NBCD .",13
8390 DATA 19136,65472,"TAS .",12
8400 DATA 20096,65472,"JSR .",12
8410 DATA 20160,65472,"JMP .",12
8420 DATA 18560,65408,"MOVEM",16
8430 DATA 19584,65408,"MOVEM",15
8440 DATA 18496,65344,"PEA .",12
8450 DATA 18384,65280,"NEGX",12
8460 DATA 16896,65280,"CLR",12
8470 DATA 17408,65280,"NEG",12
8480 DATA 17920,65280,"NOT",12
8490 DATA 18944,65280,"TST",12
8500 DATA 16744,61888,"CHK ",17
8510 DATA 16832,61888,"LEA ",18
8520 DATA 20680,61688,"DB",19
8530 DATA 20672,61632,"S",20
8540 DATA 20480,61696,"ADDQ",21
8550 DATA 20736,61696,"SUBQ",21
8580 DATA 24576,61440,"B",23
8590 DATA 28672,61696,"MOVEQ #",24
8600 DATA 33024,61936,"SBCD ",25
8605 DATA 32960,61888,"DIVU ",17
8610 DATA 32960,61888,"DIVS ",17
8630 DATA 32768,61440,"OR",31
8635 DATA 37056,61632,"SUBA",30
8640 DATA 37120,61744,"SUBX",25
8650 DATA 36864,61440,"SUB",31
8660 DATA 45320,64568,"CMPM",28
8670 DATA 45056,61440,"",29
8680 DATA 49472,61744,"EXG",22
8710 DATA 49048,61936,"ABCD",25

164

Chapter 9 The Disassembler

8720 DATA 49344,61888,"MULU ",17
8730 DATA 49600,61888,"MULS ",17
8740 DATA 49152,61440,"AND",31
8745 DATA 53440,61632,"ANDA",30
8750 DATA 53504,61744,"ADDX",25
8760 DATA 53248,61440,"ADD",31
8770 DATA 57344,61440,"",32
8998 DATA 0,0,"??",0
8999 DATA -1,-1,"",-1
9000 DEFine PROCedure do_cond(N)
9010 RESTORE 9020
9020 DATA "T","F","HI","LS","CC","NE","EQ","VC"
9025 DATA "VS","PL","MI","GE","LT","GT","LE"
9030 FOR i=0 TO N
9040 READ Q$
9050 NEXT i
9060 p$=p$&Q$&" "
9070 END DEFine
9080 DEFine FuNction comp2(N)
9090 RETurn N-256*(N>127)
9120 END DEFine
9130 DEFine FuNction comp2_w(N)
9140 RETurn N-65536*(N>32768)
9150 END DEFine
9160 DEFine PROCedure do_dot(s)
9170 SELect s
9180 ON s=0:p$=p$&".B "
9190 ON s=1:p$=p$&".W "
9200 ON s=2:p$=p$&".L "
9220 END SELect
9230 END DEFine
9240 DEFine PROCedure bits(a)
9250 SELect ON a
9260 ON a=0:p$=p$&"TST"
9270 ON a=1:p$=p$&"CHG"
9280 ON a=2:p$=p$&"CLR"
9290 ON a=3:p$=p$&"SET"
9300 END SELect
9305 p$=p$&" "
9310 END DEFine

165

Chapter 9 The Disassembler

Before going through the listing, I will explain the main
variables. They are:

pe the location of the next word to be disassembled the disassembled
instruction

p$ the first word of the instruction, ie the opcode the location of
op

op the output stream (usually 1)
mem element 1 — opcode
strm element 2 — fixed bit mask
oplist() element 3 — the type
op$() the start of the instruction
nop number of opcodes
type the current instructions type
size the current instructions size — 0 byte, 1 word, 2 long

Lines Proc/Fn Description
1-7 Read the data at lines 8000 ff into the arrays.
10-15 Choose start address and output stream.
20-30 The main loop disassembling instructions until space is

pressed.
100-120 hi$ A sub-function for hex conversion.
130-160 h2$ Converts 0-255 into hex.
170-190 hex$ Converts 0-65535 into hex.
200-250 band Does bitwise AND instruction on words — used instead of

& & as the latter doesn't work on numbers above $8000.
260-280 sml Strips bit 15 off word (used by 'band').
300-370 dec Converts hex string into decimal in 'dd'. (Note this is

a PROC not an FN due to version FB problems.)
400-440 bhex$ Converts O-$FFFFFFFF into hex.
500-670 reglist Procedure to build up register list for MOVEM.
680-730 back Function to reverse the bits in a byte.
1000-1130 diss Main procedure. Starts by reading op, setting mem, and

then prints start address. GETLP goes through the
opcodes until the correct one is found, then p$ and
type set. The full mnemonic is built up using do_op,
then each opcode is printed.

2000-3930 ea Important effective address calculator. Uses two
important parameters — amode & reg, which represent the
addressing mode and register number taken from the
opcode byte. The SELECT command is used to distinguish
between each mode, and later on between each register
for mode 7.

2655 Prints strange mnemonic if an invalid register is
specified in mode 7.

3930-3970 efad Used for most instructions that have the register
number in bits 0-2, and the addressing mode in bits 3
to 5. In fact the only instruction that doesn't is the
destination part of the MOVE instruction.

4000-7940 do_op Main code that calculates the remaining parts of each
type of instruction, using SELect to distinguish
between them.

4020 Type 0 instructions require no further additions, so no
action is taken.

166

Chapter 9 The Disassembler

4200 Type 2 instructions namely the immediate forms OR, AND,
SUB, ADD, including the CCR and SR forms.

4325 There is only one type 3 instruction — MOVEP.
4355 Type 4 instructions are the 'test a bit and ?' ones

with dynamic bit numbers.
4380 Type 5 instructions are the 'test bit' ops with static

bit numbers.
4510 Type 6 instructions are the MOVE family. For the source

address, proc efad is used, but the destination uses
proc ea

4610 There is one type 7 instruction — STOP which requires a
16 bit parameter.

4810 Type 8 instructions require a following 3 bit
parameter.

4830 The only type 9 instruction is LINK, and requires
immediate data and register number.

5010 The only type 10 instruction is the MOVE to USP
operation.

6110 TRAP is the only type 11 instruction, requiring a4 bit
parameter.

6220 Type 12 instructions are TST, JMP and JSR. TST is
different as the size is variable, which is the reason
for the full stops on the ends of JMP and JSR in the
data table.

6260 Type 13 is the MOVE to CCR instruction. Note the size
is 1, ie Word.

6280 Type 14 is the MOVE to SR instruction.
6310 Type 15 is the MOVEM register-to-memory instruction. It

uses reglist and back to convert the following word
into standard syntax register list.

6410 Type 16 is the MOVEM memory-to-register instruction.
6460 Type 17 instructions require an address followed by a

data register.
6510 The only type 18 instruction is LEA, which needs an

address followed by a data register.
6560 Type 19 instructions are the Dbcc ops, and procedure

do_cond is used to determine the condition, then the
data register and branch destination are calculated.

6610 Type 20 instructions are the Scc ops requiring a
condition and address.

6710 Type 21 instructions are the 'quick' forms of ADD and
SUB, requiring immediate data, a register, and an
address. The expression d=d+8*(d=0) is a fast way of
setting d=8 if d was 0.

6910 Type 22 instructions are the branch on condition and
BSR instructions. The condition is extracted from the
opcode, and special action taken for BRA and BSR. Other
conditions are calculated using procedure do_cond. Both
short and long branch destinations are then worked out.

7060 The only type 24 instruction is MOVEQ, which requires
data and a register number.

7086 Type 25 instructions are SCBD, SUBX,ABCD,and ADDX. They
require either D?,D? or —(A?),-(A?).

7110 The only type 28 instruction is CMPM, which requires
(A?)+,(A?)+.

7210 Type 29 instructions are CMP, CMPA and EOR. Note that

167

Chapter 9 The Disassembler

these have empty initial values in the data table, and
the initial part of the instruction is calculated in
this part of the program.

7350 The only type 22 instruction is EXG, which needs to be
followed by two registers. (Note that this one is not
in 'order'.)

7510 Type 30 and 31 correspond to the instructions ADD,
ADDA, SUB and SUBA.

7710 Type 32 instructions are the shift and rotate
instructions. There is no initial value of p$ on entry
to it; the whole opcode is constructed at this point.

8060-8998 The main data list for all the instructions. The
numbers are expressed in decimal, which makes them
harder to understand at a glance. Note that the final
entry of 0,0,"??",0 ensures that any illegal
instructions will get the opcode "??".

9000-9070 do_cond Adds to p$ the condition code defined by N.
9100-9120 comp2 Gives a signed number for 8 bit quantities.
9130-9150 copm2_w As comp2 but for 16 bit quantities.
9160-9230 do_dots Adds the appropriate size mnemonic to the instruction.
9240-9300 bits Adds the appropriate text for the 'bit test and ?'

instructions.

To the best of my knowledge, the program disassembles correctly
all the 68008 instructions, and calculates the destinations of all
relative instructions. To use it, simply RUN, and there will be a
pause while the array is set up. Youcan then enter the starting
address and output stream, and if all is well you should see
instructions you recognise. To test it, start disassembling at the
switch-on location, defined by vector 0, and you should see quite
an elaborate memory test, though you may not realise exactly what
it does at first.

168

Chapter 9 The Disassembler

Converting it to machine code

This may seem a daunting prospect at first, but it's not really,
as long as you take things easy to avoid silly mistakes. The
complete conversion shouldn't take over 4K bytes, though on my
version over 1K was devoted to data alone. With this sort of
length of program, conversion without an assembler is a near
impossibility, though a great speed improvement can be made by the
addition of just 26 bytes of code, and I'll cover this first.

The slowest part of this program is undoubtedly the REPeat loop at
line 1030. Replacing this by a small machine code routine speeds
the whole program up by a factor of about 4, which is a
substantial difference.

What the machine code has to do is scan the list of opcodes,
comparing them to the desired one, then return back to BASIC with
a number corresponding to the value of 'I' at line 1040. As it is
beyond the scope of this book to show how machine code can access
BASIC arrays, the first two elements in the array oplist() have to
be POKEd into memory, in the form of pairs of words. Let's have a
look at the routine responsible for this great improvement.

Listing 9.2: Disassembler Improver

enters with D1=Op code
exits with number in RETPAR

41FA001A LEA TABLE(PC),A0
4280 CLR.L D0 zero count
5280 LOOP ADDQ.L #1,D0 increase counter
3401 MOVE.W D1,D2 D2=op code
C458 AND.W (A0)+,D2 mask bits
B458 CMP.W (A0)+,D2 compare with op code
66F6 BNE LOOP if not then try again
41FA0008 LEA RETPAR(PC),A0
1080 MOVE.B D0,(A0) store answer in RETPAR
4280 CLR.L D0 ready for BASIC
4E75 RTS and return
0000 RETPAR DS 2 space for result
.... TABLE starting here a table of double word entries, the

first being the mask, the second being the op code.
The last entry must be 0000,0000

It uses DO as a counter, equivalent to 'I' in the SuperBASIC, and
A0 as a pointer to the table. It scans the table until a match is
found, then stores the value of DO in location RETPAR.

At location TABLE you should POKE the words for the masks and
opcodes, read from the data statements. (Note that the order of
each pair has to be reversed before POKing.) Then, to use the

169

Chapter 9 The Disassembler

routine, add some lines like

1030 CALL ????,op: REM start location
1040 LET i=PEEK(????+26)

Choose a sensible place for the routine — don't put it in the same
place you put the routines you want disassembled, for example!

The full disassembler

Before starting conversion to a complete machine-code version, it
is best to specify a few things. Firstly, I defined exactly how I
was going to store the equivalent of the important variables, and
in what registers.

The 68008 has so many registers that you don't have to store any
variables (except 'P$') in memory — they can all be held in
registers. The ones I chose were:

PC = A5
OP = D7 word
SIZE = D5 byte
'P$' = A4

The way I defined P$ was by having space of 40 bytes set aside for
it, starting at location PSTR. At the start of the routine, I put
the instruction

LEA PSTR(PC),A4

which set it to 'null string'. Then, every time something had to
be added to it, I used auto-increment addressing. For example, if
I wanted to add a bracket to it, used

MOVE.B #"('',(A4)+

which stores the ASCII for '(' in the string, then increments A4
ready for the next 'addition' to it. When the instruction was
complete, a

MOVE.B #10,(A4)

stored a line feed to store its end, ready for printing. If you do
it this way, don't be tempted to do word and long operations
directly on it. For example, if you had to add '(PC)' onto it,
don't try

MOVE.L #"(PC)",(A4)+

170

Chapter 9 The Disassembler

as I did. When the program executes this, if A4 is not even,
(there is a 50/50 chance it won't be) you will cause an address
error, with nasty consequences.

The equivalents of the functions HEX$ and BHEX$ I wrote were very
similar to the HEX4 and HEX8 routines in Chapter 4, but instead of
calling PRINT, each ASCII byte was added by doing

MOVE.B D0,(A4)+

The BASIC program makes a lot of use of the SELect command, which
has no real equivalent in 68008. To make up for this, I wrote a
jump table calculator, a sort of machine code ON GOTO instruction.
It wasn't as easy as I first thought, as both the routine and the
data it used had to be position independent. The way around this
was to make the table contain not simply a list of where each
routine was, but a list of words defining how far away from the
list the routines were. This can be done simply with an assembler
by using the '*' operation, which stands for 'current value of the
PC', so a list of entries would look something like this:

TABLE DCW TYPE0-*
DCW TYPE1-*
DCW TYPE2-*
DCW TYPE3-*

The DCW stands for 'define constant word', and may vary from
assembler to assembler.

The routine that uses this data follows, and requires two
parameters — the 'number' that the routine requires, starting at
0, in D0, and the location of the jump table, in A0.

Listing 9.3: Jump Table Calculator

On entry – D0.B=ITEM 0-127
A0=TABLE start

4880 TABCALC EXT.W D0
48C@ EXT.L D0 D0=long
DaBa ADD.L D0,D0 double D0
b1ic@ ADDA.L D0,A0 add to table start
3010 MOVE.W (A0),D0 D0=table entry
48ca EXT.L D0 make it long
D1CcH ADDA.L D0,A0 get absolute address
4ED@ JMP (A0) go to the routine

Firstly, D0 is made a long word, then doubled. This is added to
the start address of the table, so A0 points to the relevant word
in it. Next the word is read into D0, then made long.

171

Chapter 9 The Disassembler

This is so that negative displacements can be specified in the
table, and the displacement added to the location in the table,
giving the absolute location. Finally, the routine is jumped to.

I hope this has given you some ideas for your own conversion —
don't be afraid of trying it. It can be done in steps, testing as
you go. One possible improvement is testing for illegal addressing
modes and sizes, for the instructions that don't allow all the
modes. This could be done with a data table for each of the
allowed lists, and a parameter passed to the address calculator
indicating which table is used for the instruction.

172

CHAPTER 10 Other 68000 Series Devices
The 68008 is just one of a series of processors from Motorola. The
entire range is designed to be upwardly software compatible, though
there are slight exceptions to this. The Sinclair QL is apparently
the first of a series of machines from Sinclair to use the 68000
family, so we can expect their next machine to use another 68xxx
processor.

In this chapter, we will look at the various other processors in
the family, and some of their support chips. At the time of
writing, some of these products exist on paper only — their
specification is known, but the devices themselves may not be
available.

Processors — from 8 bit to 32 bit

There are currently four processors in the series, summarised
below:

Processor Features
68000 16 bit data bus version, 24 address bits
68008 8 bit data bus, 20 address bits
68010 virtual memory version of 68000
68020 32 bit data and address bits, virtual memory processor

The 68000 — the flagship

The first in the series is the 68000. To the programmer it is
practically identical to the 68008 used in the QL, except that code
runs twice as fast as it would in the QL. The reason for the speed
difference is because of the hardware. The 68000 has a 16 bit data
bus, while the 68008 has only 8 bits.

This means that all data and opcodes take half as long to read from
memory, thus nearly doubling the comparative speed of operation.
Another difference is that there are 24 address bits, so it can
access up to 16 Mbytes of memory. In addition, all seven levels of
interrupts are supported.

The 68008 — reduced version

This is the processor in the QL, and is a cut-down version of the
68000. It has only 8 data bits, and 20 address bits, thus
addressing up to 1 Mbyte. It is designed for use in low-cost
applications, and its narrow data bus is easier (and cheaper) to
interface to 8 bit peripheral devices. This was the primary
consideration in its choice for the QL, as it reduced the number of
pins necessary on the expensive custom chips.

173

CHAPTER 10 Other 68000 Series Devices

The 68010 — virtual memory processor

This is software-compatible with the previous processors, with one
exception, but its major advantage is that it supports virtual
memory.

What this means is that, to the programmer, it seems as if a large
amount of the 16 Mbyte address space contains memory, where in
actual fact there is a much smaller amount of RAM physically
there. This is done by storing memory contents on some form of
secondary storage, such as big capacity disk drives. When the
processor tries to access a section of memory that is not
physically present, the access is paused while the secondary
storage is read, then the instruction completes.

To control the virtual memory facilities, there are some register
differences on the 68010. In addition to the normal register set,
there is a 'vector base register', and two 'alternate function
code registers'. Certain instructions have been added to the set
to manipulate these registers, based on the mnemonics MOVEC and
MOVES, for 'move control' and 'move address space'. The vector
base register is used to store the location of the vector table,
which lies at $000000 in the 68000/8, so that it can be moved
elsewhere in the memory map. The only software in- compatibility
is with the MOVE from SR instruction, which becomes privileged in
the 68010. Exceptions are handled differently, as more data is put
on the stack, from 4 to 29 words. Bus and address errors are
handled in a different way, to aid virtual memory operation.

The final extra feature of the 68010 is its special 'loop-mode'
operation. It allows small DBcc loops to execute very much faster
than they would normally, by storing all the opcodes of the loop
inside the processor. This cuts down on memory access drastically,
and offers great speed improvements. It is particularly impressive
when doing block move and search operations.

The 68020 — 32 bit virtual memory The 68020, when available, will
arguably be the world's most powerful microprocessor. It has all
the features of the 68010, but with the addition of a full 32 bit
data and address bus, as well as a fast co-processor interface. It
is the first processor to have both 32 bit data and address bus,
which means it can directly access up to a staggering 4096 Mbytes
of memory. Its wide data bus makes it very fast indeed, as it can
fetch 32 bits of data in a single cycle, while its co-processor
interface gives it great expansion capabilities.

174

CHAPTER 10 Other 68000 Series Devices

As well as the extra registers of the 68010, it has another A7
register, the master stack pointer, a 'cache control register'
(CACR) and a 'cache address register' (CAAR). Its instruction set
is upward-compatible with the previous processors in the family,
but has been greatly extended. As well as byte, word and long
sizes of operations, quad word operations can be executed, which
give 64 bit calculations. Four further addressing modes have been
added, to improve its indirect memory operations, and the handling
of BCD data has been improved with the instructions PACK and
UNPCK. There are extra system traps, the DIV and MUL in-
structions operate on 32 bit parameters, and the Bcc and BSR
instructions are extended on it to give 32 bit displacements. Two
of the unused bits in the status register are used in the 68020,
namely bit 14 asa second trace bit, and bit 12 as a
master/interrupt flag.

The hardware of the 68020 includes many features for efficient
multi- processing, and has instructions to handle co-processors.
In particular, it can work in conjunction with the 68881 maths
processor, detailed later, producing a very powerful combination.

Support chips

There are several peripheral devices available for the 68000
series, some more specialised than others. They are summarised
below:

Device Description
68881 Floating point maths co-processor
68451 Memory management unit (MMU)
68450 DMA controller
68465 Floppy disk controller
68564 Serial I/O controller
68681 Dual UART
68486 Raster memory interface
68487 Raster memory controller

Most of these are standard, and can be found in most
manufacturers' product lists. The MMU is a device for providing
memory protection across the 16M range of the 68000, so that
programs running in user mode can be prevented from accessing
certain areas of memory.

A DMA controller is used for the fast transferring of data between
memory and peripherals, by using the processor only for setting up
the parameters for the transfer. The actual transferring does not
require the processor's time.

175

CHAPTER 10 Other 68000 Series Devices

A serial I/O and a UART perform similar functions, namely the
transfer of data bit-by-bit to and from the processor. They differ
in the protocols used during the transfer.

The 68881 is a floating point maths processor, with a very
powerful specification. It was specially designed to co-process
with the 68020, but can be used as a peripheral by other
processors, including the 68008, but at reduced performance. It
has eight 80 bit data registers, a 32 bit control register, a 32
bit status register, and a program counter. It has its own
instruction set, and uses four data types — single precision,
double precision, extended precision and packed real decimal
string. As each register has 80 bits, its maximum range is a
number with 64 bits of mantissa, and 15 bits of exponent, giving a
maximum value of 2132768, which I can't work out on any
calculator. Its mantissa size means it can accurately hold a
number like 12345678901234567, which is an awful lot.

Its instruction set includes most operations you would never need
to do with floating point numbers, as well as conversions and
conditional jumps.

As well as the expected operations, such as +, —, *, /, it also
does square root, trig functions, inverse trig functions,
hyperbolic functions, logs and certain powers, and a few more
besides! It does many of these operations not just on its own
registers, but also directly on the 68020's memory, and it does
its calculations, wherever possible, at the same time as the 68020
executes its own programs. It is very fast indeed — For example:
it can do over 338,000 additions or 252,000 precision
multiplications in a single second, easily outperforming most
other methods.

The 68486/7 pair of devices are compatible with all the 68000
series, the earlier 6800 series, and can also be made to work with
most other processor types. Together they offer a very flexible
graphics system, but without requiring very much extra support
electronics. They can address from between 16K and 1 Mbyte of
video memory, which can be shared with the host processor, and can
use the most popular types of RAM chips, both available and
forthcoming. They are controlled by registers, and there are many
different modes that can be selected. In bit-plane graphics mode,
four colours can be displayed in 640 pixels, or 16 colours in 320
pixels, with the displayed colours selected from a palette of 4096
different shades.

176

CHAPTER 10 Other 68000 Series Devices

List-mode graphics are primarily for character displays, and offer
definable graphics but with fast screen alteration. (This is a
disadvantage of the QL — characters displayed on the bit-mapped
screen take many bytes and quite a bit of calculation, whereas
character-mapped screens can use as little as one byte per
character.) In 'true object' mode, up to eight sprites are
available, which are independent shapes that have their own
characteristics, along with collision detection and priority
control.

Smooth scrolling in any direction is made easy and fast by the
hardware, instead of the slow block-moves required on machines
such as the QL. The 68486 chip handles the RAM, including
refreshing and timing, and general control information. The 68487
converts the data in the memory and registers into video pixel
information, which can then be converted into signals for a
monitor or television. Both the American and European signal
standards are supported, which should make conversion between the
two easier. It would be a relatively easy matter to interface
these devices to the QL, and would make an interesting add-on.

Other 68000 series machines

There are few microcomputers available at the time of writing that
use a 68000 series processor. The QL is the only one to date that
uses the 68008, while there are a few machines that use the 68000,
the two most popular currently being the Sage series, and the
Apple Macintosh. The latter machine was used to write the text and
illustrations for this book, and the quality of its firmware and
supplied software shows just how powerful the 68000 can be when
programmed well. As yet there are no commercially- available
machines that use the 68010 or 68020, though rumours abound that
there will be shortly. As they are upward-compatible, you can use
the skills learnt on your QL's 68008 on any subsequent machines,
so your knowledge is, to coin a phrase, 'future proof'.

177

EPILOGUE Multi-tasking — an Example
Multi-tasking is quite an advanced subject but, just to give you a
taster of it, there is a multi-tasking program that gives a trace
function to SuperBASIC. It does this by setting up what is known as
a job, which is an independent program, whose sole purpose is to
print at the top of the screen line numbers, when they change.

To start the trace, CALL INIT, and this sets up the job, and copies
it on to its allocated memory area. CALL PRIOR, xx sets the
relative speed of the trace to 'xx'. Eight is usually sufficient,
but 16 or even 32 may be required in some cases for best results.

I chose a window at the top of the screen above the usual windows
for the output. If your television doesn't display that area,
simply change the text that defines the window, before you call
INIT. The listing is given in Figure A.

When trage is enabled, the RESPR function is not usable, giving a
'not compiete' error, and a MODE instruction will disable the trace
output. To temporarily switch off trace, set a speed of 0.

178

EPILOGUE Multi-tasking — an Example

Setup job

7200 INIT MOVEQ #0,D1 signal 'independent job'
243C0000 MOVE.L #100,D2 set length
0064
4283 CLR.L D3 set data to 0
2243 MOVEA.L D3,A1 and start address
7001 MOVEQ #1,D0 signal 'create job'
4E41 TRAP #1 create it
43FA002C0 LEA TRAEJOB(PC),A1 A1=start
24300000 MOVE.L #LENGTH-1,D2 and length
004A
10D9 STCOPY MOVE.B (A1)+,(A0)+ copy in into its area
51CAFFFC DBF D2,STCOPY
103C000A MOVE.B #$0A,D0 signal 'activate'
7401 MOVEQ #1,D2 priority=1
7600 MOVEQ #0,D3 timeout=2
4E41 TRAP #1 activate the job
7208 MOVEQ #8,D1 speed=8

Set speed of trace to D1

22790002 PRIOR MOVEA $28068,A1 A1=job table
8068
22690004 MOVE.L 4(A1),A1 A1=2nd job header
13410013 MOVE.B D1,13H(A1) store new speed
4280 CLR.L D0 ready for BASIC
4E75 RTS and return

The Job itself

4FFA0062 TRACEJOB LEA TRACEJOB+100(PC),A7 set the stack
41FA0032 LEA SCR(PC),A0 channel name
7001 MOVEQ #1,D0 signal 'open'
72FF MOVEQ #-1,D1 job ID
7602 MOVEQ #2,D3 new file
4E42 TRAP #2 open the channel
7EFF MOVEQ #-1,D7 set initial line number to -1
22790002 TLOOP MOVEA.L $28010,A1 A1=BASIC area
8010
322990D MOVE.W $D0(A1),D1 current line number
8E41 CMP.W D1,D7 has it changed?
67F2 BEQ TLOOP if not
3E41 MOVE.W D1,D7 D7=latest no.
123C002D MOVE.B #"-",D1
76FF MOVEQ #-1,D3 timeout
7005 MOVEQ #5,D0 signal 'output'
4E43 TRAP #3 print a "-"
3207 MOVE.W D7,D1 current line no.
34790000 MOVEA.L $CE,A2 get the vector
00CE
4E92 JSR (A2) print it in decimal
80DA BRA TLOOP and go round again
000F SCR DCW 15 length of channel name
5343525F DCB "SCR_400X12A440X4" channel name
34303058
31324134
305834
00
00000000 DS 4
0000

LENGTH EQU *-TRACEJOB length of job

Figure A: Trace Using Multi-tasking.

179

EPILOGUE Multi-tasking — an Example

How it works

Multi-tasking is a major feature of QDOS, and can get quite
involved. I shall give only an overview of it here.

To multi-task, a job has to be set up. A job is an independent
program that is entirely self-contained, including its own stack
and data areas. Normally on the QL, there is only one job, namely
SuperBASIC, but the system can cater for up to 255 simultaneous
jobs at any time. Each job also has its own channels and RAM
exception vector tables. If at any time the job goes into
supervisor mode, multi-tasking is disabled until user mode is re-
entered.

Subroutine INIT configures the job, copies it to the proper place,
and activates it. It does this by using two QDOS traps, and a DBF
loop to copy the program. When setting up a job, a space of
suitable size is allocated in memory, just under RESPR, and in
this program a size of 100 bytes'is chosen as the length. This is
long enough for both the program and a suitable amount of stack
space. After the trap, the space allocated is in A0, so the actual
program is then copied into this area. Next, another trapis done,
which actually activates the new job, then control passes to
PRIOR.

Subroutine PRIOR alters the relative speed of the job by altering
the relevant byte in the job table, and putting the value of D1
into it.

TRACEJOB is the actual job, which starts by setting the stack
pointer to the end of the allocated area. A channel is then
openea, using TRAP #1, then D7 initialised to a value of —1. D7 is
used as the 'last line number printer' parameter, so the number
only gets printed when it changes.

At TLOOP, the current line number is read from the BASIC area, and
tested to see if it has changed. If it has not, then control
passes back to TLOOP until it has. When it does change, 'he new
number is stored in D7, and a '-' sign printed, which is used as a
separator between numbers.

Next, the vector at location $00CE is called, which is a routine
to 'print a decimal number', which requires the number in D1, and
the channel ID in A0. The original value of AQ is never altered
after the trap to open it, so its value doesn't need to be
explicitly set.

180

EPILOGUE Multi-tasking — an Example

At SCR, the output channel is specified, and this is done by
having a word holding the name length, followed by the ASCII of
the name. That chosen lies directly above the standard windows
when in TV mode, but if you have a monitor, or your TV cannot
display this position, alter it to suit. Don't forget to alter the
word that defines the length, though.

181

References
M68000 Programmer's Reference Manual, Motorola Ltd.
68000 Assembly Language Programming, Kane, Hawkins & Leventhal.
QODOS Manual, Sinclair Research Ltd.

The Motorola book is the guide to the 68000/8. As it is written by
its manufacturers, it contains all the technical information you
should ever need, though its use for actual programming is limited.
Be sure you get the edition that mentions the 68008.

The Leventhal et al book is full of programming examples and
methods, though it is not for the raw beginner. The chapter on
debugging is particularly good, and includes the well-tested advice
'Sometimes the following approach may be your best bet: turn off
your computer, and have a beer."

I used a preliminary version of the QDOS manual, so I'm not sure
what the final version will be like. My version contains lots of
information, but is difficult to understand.

182

Index

A
ABCD 77
ADD 33, 78
ADDA 33, 79
ADDI 33, 80
ADDQ 33, 81
Addressing Modes 4, 13, 17, 76
ADDX 82
Alternate Screen 69
AND 33, 83
ANDI 84
ASL/R 86

B
Binary 2
Bit Test Instructions 90
Branches 25, 28, 88, 92
BSR 93

C
CALL Command 19, 43
CHK 94
CLR 32, 95
CMP 27, 96
CMPA 28, 97
CMPI 28, 98
Condition Codes 9, 24

D
DBcc 30, 88
Disassembler 152, 154
DIVS 101
DIVU 102

E
EOR 34, 103
EORI 34, 104
Exceptions 46
EXG 106
EXT 106

H
Hex Loader 12
Hex Printing 38
Hexadecimal 2

I
Illegal Exception 48
ILLEGAL Instruction 107
Interrupts 50
IPC 8049 67

J
JMP 26, 108
JSR 32, 109
Jump Calculator 169

K
Keyboard Scanning 67

L
LEA 41, 110
LINK 111
LSL/R 112

M
Memory Map 9
Memory Of Screen 57
MOVE 13, 114
MOVEA 22, 116
MOVEM 22, 120
MOVEP 22, 122
MOVEQ 22, 122
MULS 123
Multi-tasking 176

N
NBCD 125
NEG 43, 126
NEGX 127
NOP 42, 127
NOT 42, 128

O
OR 34, 129
ORI 34, 130

P
PEA 132
Plotting 63
Printing Characters 65

Q
QDOS 44, 51, 65, 178
QDOS, Disabling Of 69

R
Ram Exception Vectors 53
Registers 8
Reset 48
Reset Instruction 132
RESPR 11
ROL/R 133
Rotates 35
ROXL/R 135
RTE 137
RTR 138
RTS 138

S
SBCD 139
Screen Memory Map 58
Screen Scroll 31
Set If Condition (Scc) 140
Shifts 35
Sign Extending 4
Stack Pointer 21
Status Registers 8
STOP 142

183

SUB 143
SUBA 144
SUBI 145
SUBQ 146
Subroutines 31
SUBX 147
Supervisor Mode 9
SWAP 43, 147

T
TAS 148
Trace, Using T Bit 49

Tracing BASIC Programs 176
TRAP Instruction 149
Traps 51
TRAPV 149
TST 150
Two’s-complementing 4

U
UNLK 151
User Mode 9

V
Vector Table 47

184

Back Cover
Assembly Language Programming on the Sinclair QL explains all you
need to know about programming the 68008 microprocessor, one of the
most powerful chips currently available. It also shows how to use
the hardware and software facilities of the QL, including the 8049
second processor.

Starting from the basics, the internal structure and register set
is explained, and the many addressing modes clearly explained. The
use of the important traps and exception handlers is shown, as well
as explaining the methods of adding your own.

Many useful and explanatory machine code listings are given, along
with relevant BASIC procedures and functions, including a full
disassembler. The most important features of QDOS are revealed,
along with how best to use them in your own programs.

Machine code programming on powerful processors can be a daunting
prospect using complex data books, but Assembly Language
Programming can show you how easy and powerful it can be on the
Sinclair QL.

Andrew Pennell is a university student and freelance programmer,
and contributes to several magazines, including Popular Computing
Weekly. He has written software for several companies, including
Sinclair Research.

 £7.95 net

185

	Contents in detail
	CHAPTER 1
	CHAPTER 2
	CHAPTER 3
	CHAPTER 4
	CHAPTER 5
	CHAPTER 6
	CHAPTER 7
	CHAPTER 8
	CHAPTER 9
	CHAPTER 10

	Introduction
	Credit where it's due

	CHAPTER 1 Memory, Bits and Bytes
	Hex and Binary
	Binary
	Two's-complementing and sign extension
	The processor
	Useful SuperBASIC functions
	Listing 1.1: Hex-Decimal Functions

	CHAPTER 2 Inside the QL
	Figure 2.1: QL Main Components
	Figure 2.2: 68008 Register Set.
	Figure 2.3: Status Register Bit Usage.
	Supervisor and User modes
	QL memory map
	Figure 2.4: QL Physical Memory Map (not to scale).

	Storing machine code
	Listing 2.1: Hex Loader

	CHAPTER 3 The MOVE Instruction and Addressing Modes
	Direct addressing
	Indirect addressing
	Post-increment addressing
	Pre-decrement addressing
	Indirect with displacement
	Indirect with index
	Absolute addressing
	Program counter addressing modes
	Program counter with displacement
	Program counter with index
	Source and destination
	Word and byte-size accesses
	The first program
	Listing 3.1: First Program

	The stack pointer — A7
	Other sorts of MOVEs
	MOVE with status register

	CHAPTER 4 Condition Codes, Branching and Arithmetic
	The condition codes
	The SUB instruction
	Z — Zero flag
	C — Carry flag
	N — Negative flag
	V — Overflow flag
	X — Extend flag

	Branches
	Other types of SUB
	The CMP instruction
	Other compare instructions
	More branching
	An example — converting to ASCII
	How they are calculated

	Looping using DBcc
	Listing 4.1: Screen Scroll

	Subroutines
	The CLR instruction
	More arithmetic
	The ADD instruction
	Logical operations
	The AND operation
	The ANDI Operation
	OR and EOR instructions
	Shifts and rotates

	Printing in hex
	Listing 4.2: Hex Printing
	Listing 4.3: Printing 8 and 16 Bit Values

	CHAPTER 5 Further Instructions and Passing Parameters
	The NOP instruction
	The EXG instruction
	The NOT instruction
	The NEG instruction
	The SWAP instruction
	Passing parameters using CALL
	Listing 5.1: Which QDOS Version

	CHAPTER 6 Exception Processing, Traps and Interrupts
	The vector table
	General exception processing
	Table 6.1 :Vector Table
	0 & 1 — RESET
	2 — Bus Error
	3 — Address Error
	4 — Illegal Instruction
	5 — Divide by Zero
	6 — CHK Instruction
	7 — TRAPV instruction
	8 — Privilege Violation
	9 — Trace Exception
	10 — Line 1010 Emulator
	11 — Line 1111 Emulator
	12 & 13 — Undefined
	14 — 68010 Format Error
	15 — Uninitialised Interrupt
	16 to 23 — Undefined
	24 — Spurious Interrupt
	25 to 31 — Interrupt Vectors
	32 to 47 — Trap Vectors
	48 to 63 — Undefined
	64 to 255 — User Interrupt Vectors

	User-definable exception vectors
	An example of RAM vectors
	Listing 6.1: Trapping Program Bugs

	CHAPTER 7 Using the Hardware and Firmware
	The screen
	4 colour mode — high resolution
	8 colour mode — low resolution
	Plotting points
	Listing 7.1: Plotting Routines

	Printing characters
	Listing 7.2: PRINT Subroutine

	The 8049 second processor
	The keyboard
	Listing 7.3: QDOS Version of KEYROW

	The alternate screen
	Switching off QDOS

	CHAPTER 8 An A-Z of the 68008 Instruction Set
	Calculating addressing bytes
	Address & Data register direct An & Dn
	Address register indirect (An),(An)+,—(An)
	Address register indirect with displacement d(An)
	Address register indirect with index d(An, A/Dn.x)
	Absolute word nn.W
	Absolute long nn.L
	Program counter with displacement n(PC)
	Program counter with index n(PC,A/Dn.x)
	Immediate data #nn
	Mnemonics
	Size
	Condition codes
	Opcode
	Addressing modes
	ABCD — ADD BINARY CODED DECIMAL
	ADD — BINARY ADD
	ADDA — ADD ADDRESS
	ADDI — ADD IMMEDIATE
	ADDQ — ADD QUICK
	ADDX — ADD WITH EXTEND
	AND — LOGICAL AND
	ANDI — LOGICAL AND IMMEDIATE
	ANDI TO SR/CCR — AND IMMEDIATE TO STATUS REGISTER
	ASL/R — ARITHMETIC SHIFT LEFT & RIGHT
	BCC — BRANCH ON CONDITION
	BTST, BCHG, BCLR, BSET — TEST BIT INSTRUCTIONS
	BRA — BRANCH ALWAYS
	BSR — BRANCH TO SUBROUTINE
	CHK — CHECK REGISTER
	CLR — CLEAR
	CMP — COMPARE
	CMPA — COMPARE ADDRESS
	CMPI — COMPARE IMMEDIATE
	CMPM — COMPARE MEMORY
	DBCC - DECREMENT AND BRANCH UNTIL CONDITION
	DIVS — SIGNED DIVISION
	DIVU — UNSIGNED DIVISION
	EOR — EXCLUSIVE OR
	EORI — EXCLUSIVE OR IMMEDIATE
	EORI TO CCR/SR — EXCLUSIVE OR IMMEDIATE TO STATUS REGISTER
	EXG — EXCHANGE REGISTERS
	EXT — EXTEND
	ILLEGAL — ILLEGAL INSTRUCTION
	JMP — JUMP
	JSR — JUMP TO SUBROUTINE
	LEA — LOAD EFFECTIVE ADDRESS
	LINK — LINK
	LSL/R — LOGICAL SHIFT LEFT AND RIGHT
	MOVE — MOVE DATA
	MOVEA — MOVE ADDRESS
	MOVE TO SR/CCR — MOVE DATA TO STATUS REGISTER
	MOVE FROM SR — MOVE DATA FROM STATUS REGISTER
	MOVE USP — MOVE USER STACK POINTER
	MOVEM — MOVE MULTIPLE
	MOVEP — MOVE PERIPHERAL
	MOVEQ — MOVE QUICK
	MULS — SIGNED MULTIPLICATION
	MULU — UNSIGNED MULTIPLICATION
	NBCD — NEGATE BINARY CODED DECIMAL WITH EXTEND
	NEG — NEGATE
	NEGX — NEGATE WITH EXTEND
	NOP — NO OPERATION
	NOT — COMPLEMENT
	OR — LOGICAL OR
	ORI — LOGICAL OR IMMEDIATE
	ORI TO SR/CCR — LOGICAL OR IMMEDIATE TO THE STATUS
	PEA — PUSH EFFECTIVE ADDRESS
	RESET — RESET
	ROL/R — ROTATE LEFT AND RIGHT
	ROXL/R — ROTATE LEFT AND RIGHT WITH EXTEND
	RTE — RETURN FROM EXCEPTION
	RTR — RETURN AND RESTORE
	RTS — RETURN FROM SUBROUTINE
	SBCD — SUBTRACT BINARY CODED DECIMAL
	SCC — SET IF CONDITION
	STOP — STOP
	SUB — SUBTRACT
	SUBA — SUBTRACT ADDRESS
	SUBI — SUBTRACT IMMEDIATE
	SUBQ — SUBTRACT QUICK
	SUBX — SUBTRACT WITH EXTEND
	SWAP — SWAP HIGH AND LOW WORDS
	TAS — TEST AND SET
	TRAP — TRAP
	TRAPV — TRAP IF OVERFLOW
	TST — TEST
	UNLK — UNLINK

	Chapter 9 The Disassembler
	The algorithm
	Listing 9.1: The disassembler
	Converting it to machine code
	Listing 9.2: Disassembler Improver

	The full disassembler
	Listing 9.3: Jump Table Calculator

	CHAPTER 10 Other 68000 Series Devices
	Processors — from 8 bit to 32 bit
	The 68000 — the flagship
	The 68008 — reduced version
	The 68010 — virtual memory processor

	Support chips
	Other 68000 series machines

	EPILOGUE Multi-tasking — an Example
	How it works

	References
	Index
	Back Cover

