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Errata

for

'Graphical Analysis of Some Pseudo-Random
Number Generators'

by

Peter A. W. Lewis

Line 3 from the top of page 13 should read

'.
. . addition of independent Uniform (0,1) random variables,

modulo 1
,
gives . .

.

'

Lines 7 and 8 from the top on page 3 should be replaced by the following sentence.

'Unfortunately, although this generator is highly defective, as we shall see

in the next Section, it is still widely used. It is, for example, the generator

supplied with the VMS operating system for DEC VAX machines.'





Graphical Analysis of some Pseudo-Random
Number Generators.

Peter A. W. Lewis

Department of Operations Research

Naval Postgraduate School

Monterey, CA 93940.

Abstract

There exist today many 'good' pseudo-random number generators; the

problem is to retrieve them. We discuss three commonly used pseudo-

random number generators, the first being RANDU, a notoriously bad
generator, but one which is still occasionally used. The next is the widely

used prime modulus, multiplicative congruential generator used in LL-

RANDOMII, the Naval Postgraduate School random number package,

and the last is the random number generator provided for microcomput-

ers with the DOS operating system. This latter pseudo-random number
generator is completely defective. Simple graphical methods for initial

screening of pseudo-random number generators are given, and the prob-

lems which arise with bad pseudo-random number generators are detailed

with graphics. Finally, recent work on obtaining even better pseudo-

random number generators is discussed.

1 Introduction.

Pseudo-random number generators are required in a large variety of computa-

tional situations, particularly those of statistical and sytems simulations. The
requirement that one have a 'good' generator almost goes without saying, but

it is not always an easily obtained objective. The problem on the grossest

level is that all pseudo-random number generators are deterministic sequences

of numbers, and this seems to be at complete variance with the requirement

that the pseudo-random number generator is required to simulate a sequence of

independent and uniformly distributed random variables.

This conundrum will not be of concern here, although it has caused much

soul searching; see, for example, the discussion in Knuth (1981, pp. 142-166).

In simulations, the deterministic nature of pseudo-random number generators is

actually a plus, because the simulation can be repeated or the random numbers

can be used in a slightly different run of the simulation for the purposes of, say,

variance reduction.

One general property of pseudo-random number generators is that they

should have a long cycle length. This means that if we start the pseudo-random



number generator with a given number, called the seed, that number should not

recur until a large number of other numbers have been generated. Moreover,

this cycle length should not depend on which of the possible numbers we use

as the starting value or seed. In the next Section, we will discuss linear congru-

ential generators, and for these the maximum (full) cycle is the largest number

which can be generated in the computer under consideration. For example, for

a 31-bit machine the maximum cycle length obtainable is 2
31

.

Note, too, that pseudo-random number generators actually generate integer

numbers; these are converted to real numbers — Uniform (0,1) deviates — by

dividing by the largest number that can be generated. A full cycle helps to make
this uniform deviate as dense on the real line as possible. This is not the same

as the uniform deviate having a uniform distribution on the unit interval. For

that, any sequence of numbers generated by the generator must be uniformly

distributed over (0,1).

Some specific generators will be discussed next; one which is known to be

bad, one which is known to be good and one which is new and whose properties

are undocumented. Then graphical tests of these pseudo-random number gener-

ators are presented. Following this, an illustration is given of the effects of using

a bad generator. Finally, we discuss recent results on testing and documenting

the properties of pseudo-random number generators, and we also discuss other

schemes for random number generation which have been proposed.

2 Congruential Pseudo-Random Number Gen-
erators.

We now discuss a special and widely used type of pseudo-random number gen-

erator called a linear congruential generator. The idea is due to Lehmer (1951).

Let Ui be the sequence of integers generated, where t = 1, 2, - - -, and Uq is the

starting value or seed. Then

Ui = {aUi-i + c) mod m. (l)

Here a, c and m are integer constants, a being the multiplier, c being the additive

constant and m being the modulus .

As remarked before, one wants a modulus which is as large as possible for

a given machine. In addition, if m is a power of 2, then the division in the

modulus operation becomes a shift operation, which is fast to implement in

a digital computer. However, other considerations may make other choices of

modulus preferable. As for the numbers a and c, their choice is crucial to the

adequate behaviour of the pseudo-random number generator.

2.1 RANDU — a bad pseudorandom number genera-

tor.

As an example of a bad linear congruential generator, consider the case where

m = 231 and

a = 2
31 + 3,

2



which in binary notation is 1000000000000000011. This is the generator RANDU
which was distributed with the IBM Scientific Subroutine Package. Actually,

there was a percursor for 35-bit machines, but we will only discuss this 31-bit

version. The choice of the constants was done mainly on the basis of compu-

tational considerations. Thus, since the multiplier has only three one-bits, the

multiplication is extremely fast.

Unfortunately this generator, although widely used, is also highly defective,

as we will see in the next Section.

2.2 Prime modulus multiplicative congruential genera-

tor.

If the constant c is chosen to be tero, one has a multiplicative congruential

generator; clearly one must avoid aero and the maximum cycle length is just

m-1. If m is a prime number, a choice which is not optimal from a computational

view, and a is chosen to be a positive primitive root of m, then one has a prime

modulus multiplicative congruential generator. The fact that a is a positive

primitive root means that the generator cycles through all m-1 values before

recycling, so that one has a linear congruential generator of maximum cycle

length.

Now positive primitive roots may not exist for a given m, but fortunately

number theorists have long been interested in this existence question and, for

many primes, the roots are tabulated. In fact, for the number 2
31 — 1, which is

the largest prime less than 2
31 and thus ideal for use in a 31-bit machine, the

numbers a = 7 and a — 7& are positive primitive roots.

The prime modulus multiplicative congruential generator with m = 231 — 1

and a = 76 was developed by Lewis, Goodman and Miller (1969) and is widely

used. It is the generator in APL and in the IMSL subroutine GGUBS, and

is implemented in a very fast Assembly Language version in a package called

LLRANDOMH at the Naval Postgraduate School (Lewis and Uribe, 1981). In-

cidental to this Assembly Language implementation is the fact that there is a

division simulation algorithm, also due to Lehmer, which speeds up the mod op-

eration. A FORTRAN Version for microcomputers is available in the Advanced

Simulation and Statistics Package (Lewis, Orav and Uribe, 1986).

This LLRANDOMH generator was developed on the basis of extensive test-

ing and has stood up well with time. Better prime modulus multiplicative

congruential generators are now known; these will be discussed in Section 5.

2.3 The BASIC pseudo-random number generator for

microcomputers.

The advent of microcomputers has opened new questions about random number

generators. In particular, where good pseudo-random number generators are

known to exist for large computers, how about 8-bit and 16-bit microcomputers?

We will be concerned here with the pseudo-random number generator which

is provided with BASIC on microcomputers which use Microsoft DOS. What
kind of generator it is, is unknown, since it is a trade secret, but it is presum-

ably a linear congruential generator. In the next Section we will examine this
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Figure 1: Two-dimensional scatter plot of sequential non-overlapping pairs of

points from the pseudo-random number generator RANDU.

pseudo-random number generator, and demonstrate why one should always use

a known pseudo-random number generator with documented properties; this

BASIC pseudo-random number generator is, in fact, terrible.

3 Some Graphical tests ofpseudo-random num-
ber generators.

3.1 Testing in general.

Testing of pseudo-random number generators is a time consuming and difficult

task. However, it is possible to screen pseudo-random number generators on

the basis of graphical tests which readily reveal gross flaws in the generator.

3.2 Two-dimensional scatter plots.

Clearly the random numbers must be uniformly distributed over their range

and we will assume that this has been checked, at least graphically, and proceed

to two-dimensional scatter plots of Un va. I7n+i for n = 1,2, . .. JV. This plot

tests for uniformity of the bivariate distribution of the pairs in the plane and

for pairwise dependence. These tests can be formalised by counting the points

which fall in the cells of a grid laid over the plot, but we do not discuss these tests

here. In Figures 1, 2 and 3 these plots are shown for RANDU, LLRANDOMII
and the BASIC generator, respectively. Actually, plots of non-overlapping pairs

U^n va. U^n-i are shown, for n = 1, 2, . .
.

, 10, 000.
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Figure 2: Two-dimensional scatter plot of sequential non-overlapping pairs of

points from the pseudo-random number generator LLRANDOMII.
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Figure 3: Two-dimensional scatter plot of sequential non-overlapping pairs of

points from the pseudo-random number generator from Microsoft BASIC.



ua ,

Figure 4: Two-dimensional slice in three-dimensional scatter plot of sequential

non-overlapping triples of points from the pseudo-random number generator

RANDU.

Note that for RANDU and LLRANDOMII there is no apparent deviation

from randomness in the plane. However, for the BASIC pseudo-random number
generator, there is definitely a striation in the scatter of points. One caveat must

be mentioned here. These plots were done on a very high-resolution Tektronix

618 monitor driven by the IBM APL-based graphics package GRAFSTAT. On
the monitor of the IBM PC, this pattern or striation is barely noticeable. How-
ever one of the students at the Naval Postgraduate School was astute enough

to notice the possibility of a pattern and to investigate it further.

It is clear from this simplest of graphical tests that the BASIC generator is

grossly defective, yet no one seems to have noticed or documented this fact.

3.3 Two-dimensional slices of three-dimensional scatter

plots.

Obviously testing of pseudo-random number generators in two-dimensions is

not enough, and one wants to proceed to higher dimensions. This is, however,

difficult on a two-dimensional screen, although programs for rotation of three-

dimensional point clouds do exist. A simple solution is to look at scatter plots

of two-dimensional slices of points in a cube. Thus one plots Uzn vs. U^n-i for

triples {t^n.^an-ii^n-a} hi which, say, 0.5 < U^n-i < 0-51. The drawback

is that if one plots, say, 10,000 of these points, approximately 1,000,000 pairs

will have to be generated. Clearly one might also want to look at other slices.

The result of these graphics is that one sees, first of all, just how truly bad

the BASIC generator is (Figure 6), and also the fact that the generator RANDU
is completely flawed (Figure 4). This has been shown analytically — see, for

6
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Figure 5: Two-dimensional slice in three-dimensional scatter plot of sequential

non-overlapping triples of points from the pseudo-random number generator

LLRANDOME.
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Figure 6: Two-dimensional slice in three-dimensional scatter plot of sequential

non-overlapping triples of points from pseudo-random number generator from

Microsoft BASIC.



example, Fishman (1978) — but was known to astrophysicists who regularly

tried to use RANDU in the 1960's to produce random scatters of points in

three-space. Nevertheless the generator was used on into the 1970's!

No obvious departure from randomness can be seen in Figure 5 for LLRAN-
DOMII.

3.4 Higher-dimensional slicing.

Slices in higher dimensional scatter plots can be investigated and have been

done for the pseudo-random number generator LLRANDOMII up to the sixth

dimension. No departures from randomness are evident. More formal tests

of pseudo-random number generators like LLRANDOMII will be discussed in

Section 5.

4 What difference does it all make?

This question was posed to me by a student after I had showed him what I con-

sidered to be proof positive of the defects of pseudo-random number generators.

It is a legitimate question, and the following example is the simplest illustrative

but substantial case I have been able to come up with.

Many of the problems with pseudo-random number generators come from

the use of recycling of pseudo-random numbers. It is a commonly used technique

for speeding up simulations and is based on the following Theorem.

Theorem 1 Let U be uniformly distributed on (0,1). Then conditional on

the event U < p, the variable U' = U/p it Uniform (0,1) and condition-

ally independent of U. Otherwise, conditional on the event U > p, the variable

U' = (1 — U)/(l — p) is Uniform (0,1) and conditionally independent of U.

What is actually happening with this trick of recycling is that low-order bits of

the random number generator are being used and, since most testing of pseudo-

random number generators is really concerned with the high-order bits, there is

no guarantee that the theoretical properties of Uniform (0,1) random variables

given in this theorem will hold for pseudo-random number generators.

To test this and show its effect on non-uniform random number generation,

in the following example we use pseudo-random numbers which have all been

stripped a given number of times by comparing them to p = 1/2.

The example is the generation of independent pairs of independent Nor-

mal (0,1) random variables by the modified Box-Muller or polar method. This

method, with a modification due to von-Neumann for speed, uses triples of

pseudo-random numbers, and thus should be fairly critically dependent on the 3-

dimensional properties of the pseudo-random number generator. It is described

in most books on simulation, and in particular in Fishman (1978, p. 412), so

that it will not be repeated here.

Figure 7 shows a scatter plot of pairs of Normal random deviates generated

by the modified Box-Muller method using the pseudo-random number generator

LLRANDOMII with no stripping. To the eye, there is no obvious departure from

randomness, i.e., no pattern, although the density of the points tapers off as one

8
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Figure 7: Plot of pairs of independent Normal random variables generated by

the modified Box-Mailer method asing the pseudo-random number generator

LLRANDOMH with no stripping.

moves from the center because of the bivariate Normal distribution of the points.

In Figure 8 there is the same plot, but this time the pseudo-random number
generator RANDU has been used. There is some intimation of a striation in the

bottom of the plot, to the left of center, and in the top to the right of center.

The plot is repeated in Figure 9 with the difference that the pseudo-random

numbers from RANDU have been stripped of six bits. The striation seems

more pronounced. In Figures 10 and 11, ten and sixteen bits, respectively, have

been stripped and there is now no doubt that there is a pattern. Thus, the

generated pairs are clearly not simulating independent Normal pairs.

What happens when LLRANDOMII is used with sixteen bits stripped? Fig-

ure 12 shows that there is no visible effect on the independence of the Normal

pairs when the pseudo-random number generator is stripped. This is encourag-

ing for the user of pseudo-random number generators and illustrates why this

pseudo-random number generator has been widely used.

One other point is of interest here. The 'badness' which shows up in the

joint structure of the simulated Normal pairs is not necessarily reflected in

the marginal structure of the Normal pairs. Thus, in Figure 13 we give a

Normal probability plot of the first variable of the pairs which were plotted in

Figure 10. The plot is reasonably straight and, in fact, within the Kolmogorov-

Smirnov bounds which are shown on the plot. With stripping of sixteen bits —
corresponding to Figure 11 — the Normal probability plot shows that there is no

longer marginal Normality in the simulated Normal pairs. But the discrepancy

in the departure in the marginal distribution is in no sense as gross as the

departure in the joint distribution.

9
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Figure 8: Plot of pain of independent Normal random variables generated by

the modified Box-Muller method using the pseudo-random number generator

RANDU with no stripping.
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Figure 9: Plot of pairs of independent Normal random variables generated by

the modified Box-Muller method using the pseudo-random number generator

RANDU with 6 bits atrippptd.
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Figure 10: Plot of pairs of independent Normal random variables generated by

the modified Box-Muller method using the pseudo-random number generator

RANDU with 10 bits stripped.
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Figure 11: Plot of pairs of independent Normal random variables generated by

the modified Box-Muller method using the pseudo-random number generator

RANDU with 16 bits stripped.
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Figure 12: Plot of pairs of independent Normal random variables generated by

the modified Box-Muller method using the pseudo-random number generator

LLRANDOMII with 16 bits stripped.

5 Further developments and references.

The development of pseudo-random number generators continues, despite the

fact that generators such as that referred to as LLRANDOMII— a prime mod-
ulus multiplicative congruential generator with multiplier a = 7

6 and modulus

m = 231 - 1 — appear to be relatively good. In fact, the LLRANDOMII
pseudo-random number generator is known to be defective, in a certain tech-

nical sense, in higher dimensions. We discuss here very briefly some of these

recent developments in pseudo-random number generators.

5.1 Other multipliers for prime modulus multiplicative

congruential generators.

In two massive studies, Fishman and Moore (see Fishman and Moore, 1985)

investigated the properties of prime modulus multiplicative congruential gener-

ators like LLRANDOMII, but with other multipliers a. The result of this study

was a list of preferred multipliers, of which 950706376 was ranked first, which

give 'better' pseudo-random number generators than LLRANDOMII. The im-

provements obtained with these multipliers are too subtle to be seen with the

simple graphical methods given in this paper. Several of these multipliers are

available in, for example, the IMSL Statistics Library and in the Naval Post-

graduate School Random Number Generator Package - LLRANDOMII.

12



5.2 The Wichman-Hill generator.

A very good, well tested, and unusual pseudo-random number generator for

computers with only 16 bit arithmetic was given by Wichman and Hill (1982).

It uses the fact that addition of independent Uniform (0,1) random variables

gives another Uniform (0,1) random variable. Combination in this way of three

prime modulus multiplicative congruential generators with small moduli gives

a pseudo-random number generator with a very long cycle length. This com-

bination scheme is, in fact, a form of shuffling; several of these schemes for

improving the performance of pseudo-random number generators are known. A
two-dimensional scatter plot of pairs from the Wichman-Hill generator is given

in Figure 15, and the two-dimensional slice of a three-dimensional scatter plot

is given in Figure 16. No obvious departures from randomness appear in the

Figures. Tests of Normal pairs obtained with this generator also give good re-

sults, although one would not strip off too many bits in a generator which has

essentially only 15 bits to start with.

5.3 Fibonacci generators.

Marsaglia has advocated a different type of pseudo-random number generator

called a Fibonacci generator. For a discussion of these generators, and a sum-

mary of other recent developments on pseudo-random number generators, the

reader is referred to the recent review article by Marsaglia (1984).

6 Conclusions: testing pseudo-random number
generators.

We have shown that one can find very good pseudo-random number generators

but also that the pseudo-random number generators provided in some packages

and with some computer systems are defective. This leads to the following

guidelines on the testing of pseudo-random number generators, which, when

done completely, is a time consuming and arduous task, not to be undertaken

lightly.

1. Testing is unnecessary in the sense that very good pseudo-random number

generators are available.

2. Testing is necessary in the sense that bad pseudo-random number gener-

ators exist on many computer systems and are commonly used.

3. It is preferable to substitute a good pseudo-random number generator

with documented properties for a pseudo-random number generator you

do not know anything about.

And even if you follow the last of these rules, it is wise to use some of the

graphical testing methods given in this paper to make sure that the implemen-

tation is correct.

13
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Figure 13: Normal probability plot for the first variable of the simulated Normal

pairs whose scatter plot is given in Figure 10. This is the case of RANDU with

10 bits stripped.

X-Voriobto

Figure 14: Normal probability plot for the first variable of the simulated Normal

pairs whose scatter plot is given in Figure 11. This is the case of RANDU with

16 bits stripped.
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Figure 15: Two-dimensional scatter plot of sequential non-overlapping pairs of

points from the Wichman- Hill pseudo-random number generator.

Figure 16: Two-dimensional slice in three-dimensional scatter plot of sequential

non-overlapping triples of points from the Wichman-Hill pseudo-random number
generator.
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