

Table	of	Contents

						BACKING	UP	YOUR	MASTER	ACT	DISK	AND	OTHER	WARNINGS

						0.0	THE	DEMONSTRATION	MINI_ADVENTURE

						1.0	OVERVIEW	OF	ACT
												1.0.1	ACT	Notational	Conventions
												1.0.2	The	QL	CALL	bug
						1.1	Fixed	Limits	of	the	System
												1.1.1	Initial	Planning	for	Your	Adventure
						1.2	The	Organisation	of	Messages
						1.3	Object	and	Location	data
						1.4	The	Vocabulary
						1.5	The	System	Programs
						1.6	The	Component	Parts
						1.7	Adding	Colour	and	Formatting	Screen	Text
												1.7.1	Inserting	Colour	with	the	MSGedt	Utility
												1.7.2	Considerations	for	Changes	of	Text	Colour
												1.7.3	Split-MODE	Screens
												1.7.4	Formatting	Messages

						2.0	BEGINNERS	GUIDE	TO	USING	ACT
												2.0.1	The	CAPTAIN	-	ACT's	Front	End
												2.0.2	The	CAPTAIN	and	Memory
												2.0.3	The	CAPTAIN's	Hot-Key	Re-awakening
						2.1	Adding	a	New	Location	to	the	Mini_Adventure
												2.1.1	Editing	the	Location	Message	File
												2.1.2	Editing	the	Location	Data	File
						2.2	Adding	a	New	Object	to	the	Mini_Adventure
												2.2.1	Describing	Objects	in	the	Text
												2.2.2	The	Object	Data
						2.3	Producing	the	Compressed	Text	File
						2.4	Producing	the	Compiled	Program	File
						2.5	Linking	the	Modules	to	Form	a	Completed	Game
						2.6	Tips	on	Using	the	Utility	Programs

												2.6.1	MSGedt_task
												2.6.2	TXTcom_task
												2.6.3	BASasm_task
												2.6.4	VOCedt_task
						2.7	Special	Features	to	Watch	Out	For
												2.7.1	Object	0,	the	Lamp
												2.7.2	Object	3,	the	Lighter
												2.7.3	Special	Effects	at	Locations:	Draughts	and	the	Gas	Leak
												2.7.4	Other	Special	Effects

						3.0	A	DETAILED	DESCRIPTION	OF	THE	ACT	SYSTEM
						3.1	The	ACT	System	Language
						3.2	The	ACT	System	Commands
												3.2.1	Commands	with	no	Parameters
												3.2.2	Commands	with	1	parameter
												3.2.3	Commands	with	2	Parameters
												3.2.4	Commands	with	3	Parameters
						3.3	The	Data	Structure	of	the	Mini_Adventure
												3.3.1	Location	Messages
												3.3.2	Object	Messages
												3.3.3	Location	Data
												3.3.4	Object	Data
						3.4	How	the	System	Programs	Work
												3.4.1	The	Player	Program
												3.4.2	The	Event	Program
												3.4.3	Considerations	for	Split-MODE	Screens
												3.4.4	May	We	Reserve	Some	Space?
						3.5	Interfacing	Machine-Code	Extensions	to	ACT
						3.6	The	ACT	On-Line	Game	Debugger	System
												3.6.1	What	Is	the	Debugger?
												3.6.2	How	Does	the	Debugger	Operate?
												3.6.3	The	Debbugger	Commands
												3.6.4	An	Example	Editing	Session	Based	on	the	Mini_Adventure
												3.6.5	The	Debug	Session,	Step	by	Step

						4.0	ADDING	NEW	FEATURES	TO	THE	SYSTEM
						4.1	Adding	a	New	Word	Function	to	the	System

						4.2	Changing	the	Lighter	to	a	Box	of	Matches
						4.3	Using	the	Routine	YES_or_NO_Response
						4.4	"Magic	Transform"	Words
						4.5	The	Use	of	Flags	to	Control	Particular	Events	or	Commands
						4.6	Arranging	for	a	Time-Delayed	Event
						4.7	Who's	Afraid	of	the	Dark?
						4.8	Etcetera,	etcetera

						5.0	SOME	FINAL	COMMENTS	ABOUT	ACT	AND	WRITING
ADVENTURE	GAMES

						6.0	APPENDIX	1	-	THE	GRAPHICS	DESIGNER
						6.1	Overview
						6.2	The	Additional	Drawing	Routines	QFILL1	and	QFILL2
						6.3	Commands
						6.4	The	PIC1	Utility

						7.0	APPENDIX	2	-	LINKING	ILLUSTRATIONS	INTO	AN	ACT	GAME
						7.1	The	Basics:	How	to	Add	Pictures	to	ACT
						7.1.1	Adding	the	Picture	Extensions	to	an	ACT	Game
						7.1.2	Producing	the	Composite	Picture	File
						7.2	Details	of	the	Utility	Programs
						7.2.1	SCNcom,	the	Screen	Compressor
						7.2.2	GDI_1_task,	the	ACT	/	Graphics	Designer	Interface
						7.2.3	GDI_2_task,	the	Picture	Compiler
						7.3	Extra	Graphics	Extensions
						7.4	More	About	ACT's	Split-MODE	Screens
						7.5	Making	Alterations
						7.6	Additional	Comments	on	Graphics	Designer	Pictures
						7.7	Additional	Information

						8.0	APPENDIX	3	-	ADDING	SOUNDS	AND	FONTS
						8.1	What	Is	SNDedt?
						8.2	How	Are	Sounds	Incorporated	into	an	ACT	Game?
						8.3	Starting	SNDedt
						8.4	Finding	Your	Way	Around	the	SNDedt	Screen
						8.5	How	To	Use	the	Editing	Window
						8.6	SNDedt	Commands

						8.7	Loading	the	Machine-Code	Module	into	a	Game	and	CALLing	the
Sounds
												8.7.1	Adding	the	Sounds	Module	to	the	ACT	Last	Data	File
												8.7.2	CALLing	the	Sounds	from	ACTBASIC	Programs
												8.8	The	Sounds	Used	in	IMAGINE
												8.9	Adding	Fonts

						9.0	APPENDIX	4	-	QFILL1	AND	QFILL2
						9.1	Using	QFILL1
						9.2	Using	QFILL2
						9.3	Additional	Information	about	QFILL1	and	QFILL2

						TABLE	1	-	THE	DEVELOPMENT	TREE	OF	AN	ACT	ADVENTURE
GAME
						TABLE	2	-	THE	OBJECT	PARAMETERS	DESCRIBED
						TABLE	3	-	LOCATION	0	PARAMETERS	DESCRIBED
						TABLE	4	-	THE	OBJECTS	IN	THE	MINI_ADVENTURE
						TABLE	5	-	WORD	TERMINATING	NUMBERS
						TABLE	6	-	THE	MAIN	TABLE	AREA	IN	THE	ACT	BASE	MODULE

BACKING	UP	YOUR	MASTER	ACT	DISK	AND	OTHER
WARNINGS

Thank	you	for	purchasing	the	ACT	system.	We	at	Digital	Precision	believe	that
it	is	the	most	powerful	system	yet	released	for	making	adventures	come	to	life
on	your	QL.

It	is	very	important	that	you	create	a	working	copy	of	the	master	ACT	disk.
When	using	ACT	to	develop	your	adventure	game	you	should	always	use	your
copy,	never	the	original.	To	make	the	copy	you	can	use	the	WCOPY	command.
You	should	use	this	copy	rather	than	the	original	for	ALL	stages	of	developing
your	adventure.

Integral	portions	of	the	code	used	in	the	operation	of	an	ACT	Adventure	are	and
shall	remain	the	intellectual	property	of	Digital	Precision	Ltd	and	the	Author.
Users	of	the	ACT	system	may	distribute	any	games	produced	without	liability	of
royalty	payments	of	any	kind	on	the	understanding	that	both	Digital	Precision
and	ACT	will	be	given	credit	in	any	documentation	accompanying	the	game	and
their	names	displayed	prominently	on	one	or	more	loading	screens	included	in
the	game.

Digital	Precision	would	like	to	point	out	that	many	hours	have	gone	into	the
production	of	the	ACT	system.	For	the	convenience	of	ACT	users,	there	is	no
requirement	for	having	the	original	master	present	in	any	drive	in	order	to	get	the
system	started.	We	are	relying	solely	on	our	customers	not	distributing	copies
unlawfully.	But	should	we	become	aware	of	an	act	(ACT?)	of	piracy,	we	will	sue
the	individuals	concerned	to	the	full	extent	the	law	permits.

A	reward	is	offered	for	any	information	leading	to	the	successful	prosecution	of
individuals	involved	in	the	piracy	of	program	material	produced	by	or	for	Digital
Precision.

0.0	THE	DEMONSTRATION	MINI_ADVENTURE

ACT	is	supplied	with	two	adventure	games.	One	of	these,	IMAGINE,	is	a
complete	adventure	that	provides	a	demonstration	of	the	sort	of	game	it	is
possible	to	produce	with	ACT.	The	other	is	the	Mini_Adventure.	This	is,	as	you
would	expect	from	its	name,	a	very	small	adventure	which	serves	two	functions.

1.	 It	provides	an	additional	demonstration	of	some	of	the	many	features	of
ACT.

2.	 It	serves	as	a	tutorial	and	also	provides	a	starting	point	from	which	you	can
develop	your	own	adventure	games.

You	can	play	the	demonstration	adventure	as	soon	as	you	have	made	the	system
backups.	To	start	the	game,	put	your	copy	of	ACT	in	drive	1	and	then	enter	the
command:

				EXEC_W	FLP1_MINI_ADVENTURE

The	notes	that	follow	will	guide	you	through	the	Mini_Adventure	and	also
mention	some	of	the	less	obvious	points	that	help	in	solving	the	game.	Figure	1
is	a	map	of	the	Mini_Adventure	to	guide	you	through	your	first	experience	with
an	ACT	adventure.	While	no	attempt	has	been	made	to	make	the
Mini_Adventure	into	a	mega-game,	it	is	fun	and,	as	small	as	it	is,	it	contains
many	of	the	classic	game	features	and	demonstrates	the	flexibility	of	the	ACT
system.

As	soon	as	you	move	away	from	the	small	cave,	you	will	need	to	find	a	source
of	light.	Don't	waste	time	with	the	broken	torch,	it's	only	there	as	a	decoy	to	stop
you	from	finding	a	working	light	source.

If	you	examine	the	lighter,	in	particular	if	you	READ	it	as	well,	it	will	tell	you
how	it	is	operated.	The	lighter	will	only	get	you	as	far	as	the	location	to	the	north
of	the	small	cave	(the	narrow	passage)	or	to	the	south	(the	smelly	cave).
Elsewhere,	the	strong	draught	will	blow	it	out	or,	if	you	go	beyond	the	smelly
cave,	the	resulting	gas	explosion	will	kill	you.

However,	all	is	not	lost.	You	will	see	some	other	objects	in	the	small	cave.	The
tool	box	might	contain	something	useful,	but	you	cannot	open	the	lid	until	you

have	found	a	way	of	freeing	it.

There	is	a	note	in	the	waste	bin	that	may	give	you	a	clue.	In	fact,	it	is	not	the
message	that	is	helpful	but	rather	the	note	itself,	because	paper	will	burn!
Although	the	draughts	will	blow	out	the	lighter,	they	aren't	strong	enough	to
extinguish	anything	more	substantial.

You	will	need	the	lighter	to	ignite	the	note,	but	don't	try	setting	fire	to	anything
you	are	holding,	since	you	will	go	up	in	smoke,	too.	The	way	around	this	is	to
leave	the	note	in	the	bin,	which	acts	as	a	fire	bucket	and	can	safely	be	picked	up
while	the	note	within	it	is	burning.	The	note	will	only	last	a	short	time	before	it
is	all	burned	away,	so	you	will	have	to	be	quick	to	complete	the	next	task.

You	will	probably	have	found	the	block	in	the	narrow	passage,	and	you	might
have	worked	out	that	it	is	a	sponge.	You	will	need	the	sponge,	so	pick	it	up	and
put	it	into	the	bin.	Don't	worry,	it	doesn't	burn.

Now	you	can	go	north	(or	east)	from	the	narrow	passage	into	the	windy	cavern
where	you	will	find	a	pool	of	liquid	which	you	might	realise	is	oil.	The	oil	will
help	you	open	the	tool	box	but	you	cannot	pick	it	up	directly;	you	must	use	the
sponge	as	a	tool.

Commands	such	as	"SOAK	UP	the	OIL	in	the	SPONGE"	will	work,	as	will
various	other	command	constructions.	As	you	will	see,	it	is	important	that	the
sponge	is	in	the	bin,	since	it	will	not	hold	the	oil	for	very	long	before	it	leaks	out.

If	the	sponge	is	not	in	a	watertight	container	when	this	happens,	the	oil	will	just
end	up	back	on	the	floor.	Once	you	have	the	oil,	you	can	go	back	to	the	narrow
passage	(to	the	east),	where	the	lighter	can	be	used	to	provide	light	as	soon	as	the
paper	is	consumed.

Back	in	the	small	cave,	you	can	now	free	the	tool-box	by	saying	OIL	the	BOX.
You	will	find	an	electric	torch	inside	which	is	not	broken.	You	should	not	have
any	trouble	distinguishing	the	two	torches,	so	take	the	good	one,	switch	it	on,	get
rid	of	any	burning	objects	you	are	still	carrying,	and	then	you	can	go	south,	into
the	smelly	cavern	and	then	east	to	adventure's	end.

It	is	worth	mentioning	a	few	of	the	features	used	in	the	Mini_Adventure	which

may	not	be	quite	so	obvious.	More	than	one	noun,	or	more	than	one	distinctive
adjective,	may	be	used	to	describe	an	Object:	torches	may	also	be	referred	to	as
lamps;	one	of	the	torches	is	ELECTRIC	and	also	OFTEN-READY,	while	the
other	is	BROKEN.

Less	obvious	is	the	size	difference	between	the	torches.	The	electric	one	is
smaller	than	the	broken	torch,	and	so	the	command	TAKE	the	SMALL	TORCH
will	single	out	the	electric	torch.	Because	size	is	relative,	if	there	were	another
torch	even	smaller	than	the	electric	one,	the	same	command	would	result	in	that
torch	being	picked	up.	TAKE	the	LARGEST	torch	would	also	acquire	the
broken	one.

Object	containment	is	maintained	for	any	degree	of	'nesting'.	You	can	construct
any	number	of	objects,	assign	them	volumes	(and	lids)	and	place	them	one	inside
another.	In	addition,	each	container	can	hold	any	number	of	objects	separately,
provided	it	has	sufficient	volume	to	contain	them	all.	Objects	can	also	be	defined
with	surface	area	rather	than	volume.	A	table	would	fall	into	this	category,
although	only	the	two	notes	are	like	this	in	the	Mini_Adventure;	try	the
command	PUT	the	LAMP	on	the	NOTE,	for	example.

Objects	can	be	defined	as	liquid.	This	automatically	alters	the	description	of	the
object	to	suit.	You	would	say	you	can	see	'SOME	water'	rather	than	'A	water'.	It
also	ensures	that	the	object	behaves	in	a	way	you	might	expect	of	a	liquid;	for
example,	you	would	need	a	tool	to	help	you	pick	up	a	pool	of	water	off	the	floor.

Objects	may	be	flammable.	They	will	only	burn	for	a	minute	or	so	before	being
consumed	(the	exact	time	is	random)	and,	in	addition,	if	they	are	on,	in,	or
themselves	contain	another	inflammable	object,	they	will	also	start	that	object
burning	after	a	short	while.

The	use	of	some	words	is	optional.	In	the	command,	'PUT	the	SMALL
ELECTRIC	LAMP	into	the	TOOLBOX',	only	the	words	shown	in	upper	case
are	used	by	ACT's	"dictionary"	(the	system's	parser).	The	same	result	would
occur	with	the	command	'PUT	SMALL	ELECTRIC	LAMP	TOOLBOX'.

Words	that	are	unimportant	for	some	commands	are	important	in	others:	the
command	'PUT	the	LAMP	on	the	TOOLBOX'	is	translated	to	'PUT	the	LAMP
into	the	TOOLBOX'	since	both	are	equivalent	to	the	command	'PUT	LAMP

TOOLBOX'.

The	command	'SWITCH	LAMP	ON'	is	not	the	same	as	'SWITCH	LAMP',
though,	since	the	word	ON	now	describes	which	state	the	lamp	should	be
switched	to.	If	the	lamp	is	already	on	then	the	first	command	will	result	in	a
message	telling	you	so,	and	the	second	will	result	in	the	lamp	being	switched	off.

																																				+--------+

																																				|								|

																																				|								|

																							******************				|				*****************

																							*	Narrow	passage	*				|				*	Windy	cavern		*

																							*																*				|				*															*

																							*	Location	2					*----+----*	Location	3				*

																							*																*									*															*

																							*		Object	5						*									*		Object	4					*

																							******************									*****************

																														|																											|

																														|																											|

																														|																											|

?????????????????					+++++++++++++++++																			|

?	This	location	?					+		Small	cave			+																			|

?	can	be	added		?					+															+																			|

?	by	following		?-----+	Location	1				+																			|

?	the	example			?					+	Objects	0,1,2	+																			|

?	in	Section	2.	?					+		3,6	and	7				+																			|

?????????????????					+++++++++++++++++																			|

																													|									\																		|

																													|										\																	|

																													|											-------\									|

																													|																			\								|

																													|																				*****************

																													|																				*	Small	chamber	*

																													|																				*															*

																													|																				*	Location	4				*

																													|																				*															*

																													|																				*															*

																													|																				*****************

																													|

																													|

																					*****************										*******************

																					*	Smelly	cavern	*										*	Adventure's	end	*

																					*															*										*																	*

																					*	Location	6				*----------*		Location	7					*

																					*															*										*																	*

																					*															*										*		Object	8							*

																					*****************										*******************

Figure	1.	The	map	of	the	mini_adventure

The	example	adventure	starts	in	location	1	(the	small	cave),	which	is	shown
above	along	with	the	other	5	locations	included.	The	numbers	refer	to	the
internal	values	used	to	describe	each	location	in	the	file	LOCN_dta.	Objects	are
marked	wherever	they	are	to	be	found;	see	Table	4	for	a	description	of	these.

Note	that	location	0	is	unused,	while	location	5	is	used	as	the	'object	dump',	that
is	a	location	with	no	paths	that	is	used	to	'contain'	objects	not	currently	in	the
game.

Here	is	a	list	of	objects	in	the	mini_adventure:

Starting	Locations
NUMBER		 OBJECT 	LOCATION 	CONTAINED	IN

0 The	GOOD	Torch 1 2
1 Toolbox 1 0
2 The	BROKEN	Torch 1 0
3 The	GAS	Lighter 1 0
4 Oil 3 0
5 Sponge 2 0
6 Waste	Bin 1 0
7 Note	(Starting	Location) 1 6
8 Note	(End	Location) 7 0

You	can	see	the	complete	list	of	words	that	the	Mini_Adventure	knows	by
examining	the	file	WORD_dta	(using	VOCedt_task).	There	are	148	words	in	its
current	vocabulary.

Here	are	the	main	command	verbs,	along	with	their	word	numbers:

QUIT 27 IGNITE 84
LOOK 28 BURN 85
SAVE 33 SET 86
RESTORE 34 FIRE 87
SCORE 35 EXTINGUISH 88
GET 36 SUICIDE 90
TAKE 37 INFORMATION 103
DROP 44 INF 104
LEAVE 45 HELP 105
PUT 46 HEALTH 106
PLACE 47 OIL 107 (Noun	also)

PICK 54 SOAK 114
READ 59 WRING 117
INSPECT 64 SQUEEZE 118
DESCRIBE 65 FIX 121
EXAMINE 66 MEND 122
POSSESSIONS 67 REPAIR 123
INVENTORY 68 JUMP 124
BELONGINGS 69 EAT 135
OPEN 70 DRINK 136
CLOSE 71 FEEL 137
SWITCH 74 WAVE 138
PRESS 75 BREAK 139
TURN 76 SMASH 140
LIGHT 83 DESTROY 141
FIND 142				

The	number	listed	refers	to	the	word	number	in	the	file.	In	addition,	each	word
has	a	numerical	tag	used	to	indicate	what	type	of	word	it	is.	This	tag	is	purely
notional	(in	order	to	simplify	the	operation	of	some	of	the	sections	of	the	ACT
player	program).	Thus	it	is	possible	for	a	word	to	be	used	as	both	verb	and	noun,
e.g.	oil.

The	types	used	so	far	are:

1.	 Direction-	or	movement-related	words.
2.	 "Throw-away"	words.
3.	 Commands.
4.	 Adjectives.
5.	 Nouns.
6.	 Special	word	types	used	in	"find	objects".
7.	 Swear	words.

1.0	OVERVIEW	OF	ACT

ACT,	an	acronym	for	"Adventure	Creation	Tool",	consists	of	fourteen	programs
and	several	data	files	(the	latter	constituting	the	demo	adventure,
Mini_Adventure)	that	can	be	used	and	combined	to	form	illustrated	text
adventure	games	to	run	on	a	Sinclair	QL.	ACT	provides	the	potential	adventure
writer	with	a	flexible	game	environment	to	which	almost	any	number	of	new
features	may	be	added.

ACT	is	to	adventure	writing	as	LOGO	is	to	graphics.	ACT	adventures	are
written	in	a	language	called	ACTBASIC,	which	has	been	deliberately	designed
to	complement	SuperBASIC,	and	then	compiled	with	the	ACT	compiler.
Automatic	text	and	picture	compression	techniques	insure	that	maximum
efficiency	of	memory	usage	is	ensured	for	both	RAM	and	magnetic	storage.

The	ACT	system	provides	the	ultimate	in	flexibility.	Any	number	of	messages,
flags,	special	conditions	or	other	features	may	be	included	in	your	adventure.
The	information	that	defines	a	game	is	contained	in	the	various	data	files,	and
changes	or	additions	to	the	game	are	made	by	using	the	utility	programs
provided.

Although	intended	mainly	as	a	tool	for	producing	professional-quality
Adventure	games,	the	ACT	system	can	be	used	with	equal	ease	for	educational
programs	-	in	fact,	for	any	type	of	program	requiring	QL	interaction	with	a	user's
response.

Section	2	of	this	guide	provides	step-by	step-instructions,	partly	in	the	form	of	a
tutorial,	that	demonstrate	each	stage	of	development	of	an	adventure	game.

Section	3	is	a	reference	section	that	includes	descriptions	of	the	data	files	and	of
the	ACT	programming	language,	enabling	users	who	are	familiar	with	the
concepts	involved	to	produce	their	own	games	immediately	without	completing
the	tutorial	section.

Section	4	contains	example	program	additions	and	modifications	that	illustrate
how	to	add	new	features	to	a	game.

You	have	complete	control	over	the	presentation	of	your	game.	Text	can	be

displayed	in	a	variety	of	ways,	and	the	full	range	of	standard	INK	and	STRIP
colours	are	supported.	Entering	colour	changes	into	ACT's	message	editor	shows
you	your	final	display	as	it	will	appear	on	the	screen.

Included	as	a	standard	part	of	ACT's	display	system	is	the	unique	split-mode
screen	system,	offering	you	the	option	of	having	both	MODE	4	and	MODE	8
displayed	on	the	screen	at	the	same	time.	This	powerful	and	flexible	feature	will
enable	you	to	have	eight-colour	capability	for	your	illustrations	and	four-colour
resolution	for	your	text.

ACT's	graphic	module,	the	Graphic	Designer,	includes	sophisticated	features,
such	as	two	efficient	screen	compression	techniques	which	will	enable	you	to
produce	complex	screens	in	as	little	as	500	bytes	or	less.	Other	unique	Graphic
Designer	features	include	fancy	text,	three	different	kinds	of	shape	FILL	and
many	more.

1.0.1	ACT	Notational	Conventions

In	order	to	provide	the	greatest	degree	of	flexibility	and	convenience,	all	of	the
ACT	utilities	include	system	defaults	for	drives	and	file	extensions	which	can	be
edited	to	any	sensible	alternative.

The	BOOT	and	CAPTAIN	(see	Section	2.0.1)	are	run	from	flp1_.	The
CAPTAIN	in	turn	will	expect	to	find	the	ACT	utilities	on	flp1_.	The	various
utility	programs	will,	by	default,	expect	to	find	data	files	on	flp2_.	However,	all
these	defaults	can	be	altered	at	run-time	if	required.

Various	conventions	for	file	extensions	have	been	used	in	setting	up	the	ACT
system.	These	conventions	aren't	obligatory	but	strongly	recommended,	since
they	will	probably	avoid	possible	confusion	while	you	are	learning	about	ACT.
The	following	table	summarises	the	main	utility	programs	and	the	various	data
file	conventions	that	are	normally	used.

Input Output
Utility Extension Extension

========= ======== ========
MSGedt_task _msg _msg

TXTcom_task _dta _dta
LOCedt_task _dta _dta
VOCedt_task _dta _dta
LSTedt_task _dta _dta
BASasm_task _prog _dta
LINKER_task _dta User-defined

1.0.2	The	QL	CALL	bug

If	you	have	a	JS	or	later	QL,	you	can	ignore	this	section.	If,	however,	you	have	a
JM	or	AH	version	of	the	QL,	you	may	suffer	from	a	potential	problem	-	the
infamous	CALL	bug.	This	bug	can	cause	your	QL	to	crash	when	large	programs
use	the	machine-code	CALL	command.

This	problem	can	occur	for	any	large	SuperBASIC	program	that	uses	CALL,
even	when	compiled	by	TURBO	or	other	SuperBASIC	compilers,	unless	a
software	"patch"	is	applied	before	it	is	run.	The	use	of	some	toolkits,	such	as	the
Supercharge	or	TURBO	extensions,	will	provide	such	a	patch,	as	will	some
versions	of	the	TK2	Toolkit.

We	have	supplied	a	small	patch	(172	bytes)	for	users	who	may	not	have	a	toolkit
available.

Currently,	the	BASasm_task	utility	will	cause	problems	with	the	CALL	bug,	as
may	future	releases	of	other	ACT	utilities.	The	BOOT	program	will
automatically	load	the	CALL	patch	if	your	QL	is	either	a	JM	or	AH	release.	This
routine	can	be	used	separately	for	other	programs	as	well.

If	you	start	ACT	from	the	BOOT	supplied,	then	the	system	front	end,	the
CAPTAIN,	is	started	and	will	provide	information	about	the	various	system
utilities.	Alternatively,	if	you	wish	to	use	the	ACT	utilities	independently,	we
suggest	that	the	CALL	patch	is	loaded	first	with	the	command:

a=RESPR(172)	:	LBYTES	flp1_CALL_BUG_FIX,a	:	CALL	a

The	use	of	the	CALL	command	in	ACTBASIC	(see	Section	3.5)	will	not	be
affected	by	this	bug,	no	matter	how	big	your	game	is.	Any	ACT	adventure	game

will	run	correctly	on	any	QL	version.

1.1	Fixed	Limits	of	the	System

The	working	limits	of	an	ACT	adventure	are,	in	part,	restricted	to	the	available
QL	memory	-	whether	that	of	the	originator	of	an	adventure	or,	where	the	game
is	sold	commercially,	the	memory	available	to	the	player.

Generally,	the	fixed	limits	of	the	system,	where	memory	is	not	the	major
consideration,	are:

A	vocabulary	of	up	to	4096	words,	each	up	to	20	characters	in	length.
98301	messages.
255	Locations.
256	Objects.
Each	Object	or	Location	may	include	up	to	127	parameters.
Each	parameter	may	have	up	to	eight	flags.
Real-time	event	timing	(one	per	second	to	4-1/2	hours	-	but	can	be
increased).
Either	MODE	4	or	MODE	8	displays	are	supported.	In	addition,	graphics	in
MODE	8	and	text	in	MODE	4	can	be	displayed	at	the	same	time.	The
compromise	made	for	this	feature	is	that	the	response	time	of	the	game	to
user's	commands	is	noticeably	increased.

Each	object	or	location	can	have	up	to	127	parameters,	each	of	which	can	be
used	either	as	a	single	8-bit	number	(values	0	to	255)	or	as	eight	separate	flags
(numbered	0	to	7).

1.1.1	Initial	Planning	for	Your	Adventure

As	for	any	computer	endeavour,	careful	planning	should	be	made	on	paper,	prior
to	beginning	the	actual	programming.	All	too	often,	an	otherwise	good	story	line
fails	to	achieve	its	desired	effect	because	of	insufficient	initial	planning.

The	first	step	for	any	adventure	is	to	plan	a	general	outline	of	the	main	features
of	the	game	-	a	story	line.	This	will	provide	a	check	for	story	and	character
continuity.	Lists	should	be	made	for	messages,	the	vocabulary	the	adventure	is
expected	to	respond	to,	the	objects	and	their	various	attributes,	and	the	cast	of
the	characters	you	will	be	using	-	their	names,	descriptions	and	special

characteristics	(strengths	and	weaknesses).

The	next	stage	is	to	draw	a	map	of	the	options	available	to	the	intended	player.
Notes	should	be	included	in	each	of	the	location	boxes	with	regard	to	any	objects
available,	any	hazards	present	and	where	any	objects	are	interactive	with	the
player.	Lines	connecting	the	boxes	should	be	indicated	as	direct	or	"hidden"
routes.

Three-dimensional	mazes	should	be	planned	on	plastic	sheets	as	overlays,	with
the	UP	or	DOWN	routes	clearly	marked.	If	"magic"	is	used	to	gain	access	or
transport	to	another	part	of	the	"game	board",	this	should	also	be	clearly	marked
on	the	"layer"	of	the	planning	overlay	to	which	it	applies.

Since	colour	plays	an	important	part	in	the	visual	impact	on	the	player,	ACT	has
provided	all	of	the	tools	you	will	need	to	present	text	in	an	effective	manner.
INK	and	STRIP	may	be	used	to	emphasise	portions	of	text;	ACT's	sophisticated
illustration	tool,	Graphics	Designer,	provides	a	memory-efficient	way	of
including	text-related	illustrations	in	your	game;	and	split-mode	screen	displays
provide	the	maximum	colour	range	for	text/graphic	adventures.

Once	the	plan	for	the	game	is	completed,	you	are	ready	to	begin	building	your
game	with	ACT.

1.2	The	Organisation	of	Messages

ACT	stores	text	used	in	a	game	in	separate	'messages'.	These	messages	are
divided	into	three	groups:

Location	-	used	to	describe	each	location	in	the	game.
Object	-	used	to	describe	objects	and	any	messages	written	on	them,	or	any
other	required	text	information.
General	message	data	-	used	for	any	other	messages.

Messages	in	each	group	are	given	numbers,	from	0	up	to	a	maximum	of	32767.
Each	message	may	be	of	any	length	up	to	a	limit	of	1600	characters.	It	is	worth
noting	that	messages	are	not	divided	into	individual	lines	until	the	completed
game	actually	prints	them	on	the	screen.

Each	message	is	a	string	of	words	and	will	be	formatted	to	fit	the	display
window	as	the	game	prints	it,	automatically	adjusting	to	the	viewing	MODE.
When	a	new	message	is	created	by	the	MSGedt_task	program,	don't	attempt	to
divide	the	message	up	into	lines;	just	type	words	sequentially,	and	ACT	will	sort
the	display	out	for	you.

1.3	Object	and	Location	data

Objects	and	locations	in	the	game	are	characterised	by	the	information	in	their
respective	data	files.

For	example,	the	way	that	individual	locations	are	connected	to	the	others	in	the
game	is	controlled	by	the	first	10	parameters	for	each	location	in	the	file	called
LOCN_dta.

Each	parameter	is	used	to	control	a	particular	direction,	while	the	value	of	the
parameter	describes	where	the	direction	leads.	If	a	value	is	0,	that	direction	is	not
a	valid	one.	Any	other	value	(1	to	255)	represents	the	location	that	the	particular
direction	leads	to.

The	object	data	works	in	a	similar	way,	except	that	the	various	parameters	are
used	to	describe	the	properties	of	each	object.

For	example,	parameters	0	to	9	are	used	to	control	which	words	in	the
vocabulary	can	be	used	to	describe	the	object,	while	parameter	10	describes
where	the	object	is.

A	full	description	of	all	the	parameters	is	given	in	Section	3,	while	the	tutorial	in
Section	2	also	provides	examples	explaining	the	use	of	the	parameters.

1.4	The	Vocabulary

Words	that	a	completed	adventure	game	knows	are	contained	in	a	data	file
which,	for	the	"Mini_Adventure",	is	called	WORD_dta.	Words	can	be	of	any
length	up	to	20	characters,	and	each	may	be	characterised	as	a	verb,	a	noun,	etc.
Each	word	has	an	associated	number,	which	is	the	position	of	the	word	in	the
data	file.	The	first	word	is	number	0,	the	second	number	1,	and	so	on.

The	WORD_dta	file	contains	about	150	words	and	may	be	altered	or	added	to	by
the	use	of	the	utility	VOCedt_task.

1.5	The	System	Programs

There	are	two	programs,	the	'Player'	and	the	'Event',	both	written	in	the
ACTBASIC	language,	controlling	the	operation	of	an	adventure	game.	The
language	used	is	similar	to	an	assembly-level	language	in	some	ways,	but	is
considerably	easier	to	use	and	incorporates	many	features	normally	found	only
in	high-level	languages.

The	structure	of	the	ACT	language	is	similar	to	SuperBASIC,	so	that	programs
may	be	created	and	edited	by	the	normal	QL	commands	EDIT,	LOAD,	SAVE,
RENUM	and	AUTO.

They	will	not	run	as	SuperBASIC	programs,	however,	and	must	be	compiled	by
the	ACT	utility	BASasm_task	before	they	are	combined	with	the	other	data	files
to	form	the	completed	adventure.	'Player'	is	used	to	control	what	happens	when
the	player	enters	a	command.

It	is	the	task	of	this	program	to	make	sense	of	whatever	the	player	says	and	to
respond	accordingly.

'Event'	is	used	to	control	activities	such	as	the	movement	and	actions	of
creatures,	or,	as	in	the	Mini_Adventure,	the	control	of	any	time-dependent
function	such	as	burning	objects.

The	'Event'	program	is	called	repeatedly	at	a	rate	of	about	once	a	second,	while
the	game	is	running.	Details	of	the	ACT	system	language	are	provided	in	Section
3;	Section	4	contains	example	additions	to	the	two	system	programs.

1.6	The	Component	Parts

To	see	how	an	adventure	is	constructed,	it	is	suggested	that	you	initially	work
backwards	from	the	completed	game	through	each	stage	of	its	creation.

Table	1	is	a	summary	of	the	process	that	creates	a	text	adventure.	Starting	at	the
top	of	Table	1,	the	demo	game,	called	Mini_Adventure	in	the	examples,	is
created	by	the	ACT	linker	utility	program	called	LINKER_task.

When	LINKER_task	is	run,	it	will	prompt	for	seven	input	files	in	turn.	These	are
shown	in	Table	1	and	are	required	in	the	sequence	given	(1	to	7).

The	first	file	is	called	ACT,	the	base	module	of	the	system.	An	alternative
file,	called	ACT_short,	is	included	with	the	ACT	system.	This	excludes	on-
line	error	messages	and	the	system	debugger,	saving	about	3900	bytes	of
memory	in	the	completed	game,	and	can	be	used	when	testing	of	the	game
has	been	completed.

The	second	file	contains	the	messages.	In	the	Mini_Adventure	it	is	called
TEXT_dta.	TEXT_dta	is	constructed	from	the	three	text	source	(location,
object	and	general	message	data)	files,	by	the	text-compression	utility
program	TXTcom_task.

TXTcom_task	will	prompt	for	the	three	input	files	required.	The	output	file
contains	the	text	included	in	the	three	input	files,	but	in	a	compressed	form.

This	serves	two	purposes:	for	one	thing,	the	space	used	in	the	final	game	by
messages	is	reduced	considerably,	and	it	is	possible	to	include	a	great	deal
more	text	in	a	given	amount	of	memory.	This	saving	can	make	a	large
difference	to	the	degree	of	game	complexity	which	can	be	accommodated
on	a	standard	QL.

The	second	advantage	is	that	the	compressed	text	is	coded	in	a	way	that
makes	it	virtually	unreadable,	unless	the	decoding	routine	in	the	ACT	base
module	is	used	to	convert	it	back	its	original	form.	It	is	almost	impossible
for	anyone	to	cheat	when	playing	an	ACT	adventure.

The	third	file	contains	the	compiled	player	and	event	programs.

The	fourth	and	fifth	files	are	the	location	and	object	data.	These	two	share	a
common	editor	program,	LOCedt_task.

The	sixth	file	contains	the	vocabulary	data.

The	seventh	file,	LAST_dta,	contains	additional	data	required	by
LINKER_task	and	will	also	contain	any	machine	code	additions	you	might
add	to	the	game.	We	actually	provide	three	versions	of	this	file,	two	of
which	include	code	to	allow	the	inclusion	of	illustrations	produced	either	by
Graphics	Designer	or	by	the	screen	compression	utility.	In	addition,	sound
effects	produced	by	the	SNDedt_task	utility	can	also	be	incorporated.	This
file	really	provides	the	link	for	a	whole	array	of	features	that	go	beyond
even	the	comprehensive	flexibility	provided	by	the	basic	ACT	system.
LAST_dta	may	be	edited	by	the	utility	LSTedt_task.

Here	is	a	list	of	all	the	files	to	be	found	on	the	ACT	master	disk.	Note	that	you
will	see	the	extra	files,	such	as	'14	System	Utilities	Follow'	in	the	directory	too.
These	don't	actually	contain	anything,	they	are	just	there	to	divide	the	directory
up	into	sensible	chunks!

BOOT This	loads	the	various	SuperBASIC	extensions	required	by	the
ACT	development	utilities	or	for	use	independently	from	other
SuperBASIC	programs	of	your	own.	It	also	provides	the
option	to	start	CAPTAIN_task	or	GDES_task	(Graphics
Designer).	

Don't	be	tempted	to	re-run	BOOT	in	order	to	restart	either	the
CAPTAIN	or	Graphics	designer	since	this	will	result	in
multiple	copies	of	the	extensions	being	installed,	LRUN	either
of	the	two	files	that	follow	instead.

CAPTAIN_boot A	short	SuperBASIC	program	that	starts	CAPTAIN_task,	the
'front	end'	utility	that	allows	semi-automatic	selection	of
several	of	the	ACT	utility	programs.	The	use	of	this	is	not
essential	since	ALL	the	ACT	programs	can	be	operated
directly	from	SuperBASIC,	however,	it	is	recommended	that
the	CAPTAIN	is	used	when	you	are	first	learning	your	way

around	ACT.
GDES_boot A	short	SuperBASIC	program	that	starts	GDES_task,	the

Graphics	Designer	program.	Note	that	you	can	also	start
GDES_task	directly	from	SuperBASIC	by	using	the	EXEC_W
command	(not	EXEC	for	this	program).

14	System	Utilities	Follow.	Note	that	all	the	ACT	utility	programs	can	be	started
by	either	the	EXEC	or	the	EXEC_W	command	from	SuperBASIC.	In	addition,
several	(marked	by	'***'	below)	may	be	selected	from	the	'front	end'	program,
CAPTAIN_task.

BASasm_task *** The	ACT	program	compiler.	This	converts	the	two	ACT
game	control	programs,	PLAYER_prog	and	EVENT_prog,
into	a	compact	form	that	is	used	in	the	adventure	game.

CAPTAIN_task The	'front	end'	program.	This	allows	several	of	the	ACT
utility	programs	to	be	called	from	a	simple	'menu'	system.

GDES_task The	Graphics	Designer.	This	is	used	to	produce	the
illustrations	for	an	ACT	adventure.	It	is	also	able	to
produce	drawings	for	other	applications.	Note	that	this
program	is	the	one	exception	to	the	rule,	it	MUST	be
started	with	the	EXEC_W	comman	from	SuperBASIC.

GDI_1_task This	is	a	convertor	program	that	takes	Graphics	Designer
_txt	files	and	converts	them	into	a	much	more	compact
format	which	is	used	by	the	ACT	adventure	games.	The
output	format,	_APIC	files,	can	also	be	reproduced	directly
by	the	PIC1	SuperBASIC	extension.

GDI_2_task This	is	the	composite	picture	compiler.	It	takes	any	number
of	files	produced	either	by	the	GDI_1_task	utility	or	by	the
SCNcom_task	screen	compressor	and	combines	them	into
a	single	file	that	provides	the	illustrations	for	an	ACT
adventure.

LINKER_task *** This	program	combines	the	various	data	files	required	to
form	an	ACT	adventure	game.

LOCedt_task *** This	program	is	used	to	edit	the	data	files	that	describe	the
locations	and	objects	(or	creatures)	contained	in	an
adventure.

LSTedt_task *** This	program	is	used	to	edit	a	special	data	file	that	contains

some	'odd'	pieces	of	information	required	by	each	ACT
adventure.	It	also	allows	machine-code	additions	to	be
incorporated	into	a	game.

MSGedt_task *** This	program	is	used	to	edit	the	various	message	(or	text)
files	used	in	the	ACT	game.	Note	that	it	allows	full	control
of	the	INK	and	STRIP	colours	of	the	messages.

SCNcom_task The	most	efficient	screen	compressor	yet	produced	for	the
QL	(by	quite	a	margin).	Compressed	screens	can	be
included	directly	into	the	composite	picture	file	(produced
by	the	GDI_2_task	utility)	and	may	also	be	reproduced
directly	from	SuperBASIC.	Either	the	whole	screen	or	any
part	may	be	compressed.

SNDedt_task A	flexible	sound	(rather	BEEP)	editor.	This	allows	any
BEEP	(or	combination	of	BEEPs)	to	be	incorporated	into
an	ACT	adventure.

TXTcom_task *** The	text	compression	utility.	This	program	will	combine
the	three	message	files	used	by	the	ACT	system	into	a
single	data	file	which	contains	the	text	in	a	condensed
format.

VOCedt_task *** This	is	used	to	edit	the	vocabulary	of	words	that	an	ACT
adventure	will	understand.

ACTfont_bas Unlike	all	the	other	ACT	utilities,	this	is	a	SuperBASIC
program.	This	simple	program	allows	you	to	incorporate
alternative	fonts	into	an	ACT	game.	ACTfont_bas	actually
works	by	taking	the	data	from	any	QL	format	font	data	file
and	combining	it	with	a	short	machine	code	loader	that	will
automatically	incorporate	the	chosen	font	into	the	game.

38	Data	Files	Follow.	These	form	the	basic	building	blocks	of	an	ACT	adventure
game.	You	can	use	the	various	system	utility	programs	to	edit	these	files	and	so
alter	or	add	to	the	Mini_Adventure	framework.	The	games	you	develop	can
include	any	of	the	features	already	provided	as	well	as	incorporating	additional
features,	either	to	the	two	system	programs	(PLAYER_prog	and	EVENT_prog)
or	by	way	of	machine	code	additions	such	as	the	sound	module	(produced	by
SNDcom_task)	or	of	your	own	making.

ACT This	is	the	'root'	module	of	an	ACT	adventure.	It

contains	the	parser,	the	code	to	support	all	the
ACTBASIC	commands	and	also	the	game	'debugger'.
This	(along	with	ACT_short)	is	the	only	data	file	that
you	cannot	alter	in	any	way.

ACT_short This	is	identical	to	ACT	except	that	the	'debugger'	is
not	included.	This	module	is	used	instead	of	ACT
once	a	game	is	finished	and	fully	tested.	The	resulting
game	is	4K	shorter	(the	room	taken	up	by	the	game
debugger)	and	also,	more	importantly,	doesn't	include
the	opertunities	to	'cheat'	that	the	inclusion	of	the
debugger	system	would	provide	for	the	player!

PLAYER_prog The	operation	of	an	ACT	adventure	is	controlled	by
two	programs,	written	in	ACTBASIC.	This	is	the
source	code	for	the	program	that	is	responsible	for
responding	to	commands	entered	by	the	player,	hence
the	name	chosen.	This	source	file	isn't	included
directly	into	an	ACT	game,	rather	it	is	compiled	along
with	the	other	program,	EVENT_prog,	by	the	system
compiler,	BASasm_task,	and	the	resulting	module
(PROG_dta)	is	then	incorporated	into	the	game.

EVENT_prog This	is	the	ACTBASIC	source	program	that	controls
the	operation	of	real-time	events	within	an	ACT
game.	This	includes	the	movement	of	creatures	or
objects	within	the	game,	burning	objects,	random
events	etc.

PLAYER_prog_additions Both	PLAYER_prog	and	EVENT_prog	are	provided
in	a	form	that	doesn't	include	any	support	for
illustrations.	If	you	want	to	produce	a	game	that	is
'text	only'	then	they	should	be	used	directly.	However,
if	you	want	to	illustrate	your	game	(we	advise	you	to
have	a	go	at	playing	IMAGINE	before	deciding,	this
will	highlight	the	pros	and	cons	associated	with
including	illustrations)	then	you	should	use	the
SuperBASIC	MERGE	command	to	add	the	relevent
_additions	file	to	both	the	system	programs.	These
additions	contain	all	the	extra	code	required	to
support	illustrations.

EVENT_prog_additions The	illustration	additions	required	for	EVENT_prog.

EXAMPLES_prog Several	example	additions	are	described	in	the
manual	that	add	a	variety	of	extra	features	to	those
included	with	the	supplied	version	of	PLAYER	and
EVENT_prog.	The	source	code	for	each	of	these
additions	is	included	in	this	file	to	save	you	having	to
type	them	in.	Note	that	most	of	them	will	require
modifications	or	additions	before	they	are	included
though,	please	study	the	relevent	parts	of	the	manual
(Section	4.)	before	attempting	to	use	the	contents	of
this	file.

GEN_msg All	the	text	used	in	an	ACT	game	is	contained	in
three	data	files.	This	one	contains	all	the	'general'
messages,	that	is	those	not	specifically	associated
with	location	or	object	description.

OBJT_msg This	text	source	file	contains	all	the	text	used	to
describe	objects.	This	also	includes	any	messages	that
might	be	written	on	an	object.

LOCN_msg This	text	source	file	contains	all	the	text	used	to
describe	the	locations.	Two	descriptions	are	used	for
each	location,	one	is	a	full	description	while	the	other
provides	just	a	few	words	of	identification.

LASTpic_dta These	three	files	are	just	different	versions	of
LASTpic_QFILL_dta the	same	thing.	They	basically	contain	some	odd
LAST_dta bits	of	information	required	by	the	ACT	game	that

doesn't	really	belong	in	any	of	the	other	data	files	as
well	as	incorporating	any	machine	code	additions.	We
supply	the	basic	form,	LAST_dta,	which	contains	no
extra	machine	code	enhancements	to	the	system	and
the	two	'pic'	versions	that	include	several	extras	that
provide	the	illustration	support	for	a	game.	LAST_dta
should	be	used	for	'text	only'	games	while	the	choice
of	either	LASTpic_dta	or	LASTpic_QFILL_dta	is
governed	by	which	Graphics	Designer	features	you
include	in	your	illustrations.

LOCN_dta This	data	file	contains	the	information	that	describes
the	nature	of	each	location	and	how	all	the	locations
connect	together.

OBJT_dta This	data	file	contains	the	information	that	describes
the	properties	of	the	objects	and	creatures.

PROGpic_dta The	two	ACTBASIC	programs,	PLAYER_prog	and
EVENT_prog,	are	compiled	by	the	system	compiler
BASasm_task	before	being	incorporated	into	the
game.	Although	you	can	always	re-produce	this
compiled	form	of	the	programs	whenever	you	need	to
(the	process	takes	a	a	few	minutes)	we	thought	it
would	be	helpful	to	provide	the	compiled	form	with
the	kit	to	save	you	time	when	you	are	first	learning	to
use	ACT.	Note	that	BOTH	source	programs	are
compiled	into	a	single	file	by	the	compiler	and	that
this	is	the	illustrated	version,	ie.	it	is	formed	by
compiling	the	source	programs	after	the	two
_additions	files	are	MERGED	with	them.

SNDedt_dta This	contains	a	sample	set	of	'sounds'	data.	In	fact	this
contains	the	sounds	used	in	IMAGINE;	use
SNDedt_task	to	load	and	hear	them.

TEXT_dta The	three	text	files	(those	with	_msg	extensions)
aren't	included	directly	into	the	game,	rather	they	are
combined	and	condensed	by	the	text	compressor
program	TXTcom_task.	This	is	the	resulting
compressed	file	that	contains	all	the	original	text	in	a
form	that	the	de-compression	routines	in	the	ACT
root	module	can	understand	but	which	it	is	virtually
impossible	to	read	by	simple	inspection	(try	reading
this	file	if	you	don't	believe	us!).	As	for	the
PROGpic_dta	file	we	have	included	this	module	to
save	you	time	when	you	first	start	using	ACT,	you
can	always	re-create	it	from	the	source	files	as	will	be
necessary	whenever	you	make	changes	to	the	text.
This	re-creation	process	takes	a	few	minutes.

WORD_dta This	file	contains	all	the	words	that	the	game	is	to
know.	The	contents	can	be	altered	or	added	to	by
using	the	VOCedt_task	utility.

BLANK_txt
EXPLOSION_txt												
LOC1_txt

These	files	are	the	Graphics	Designer	picture	files	that
were	used	to	form	the	illustrations	used	in	the

LOC2_txt
LOC3_txt
LOC4_txt
LOC5_txt
LOC6_txt
LOC7_txt
OBJ0_txt
OBJ1_txt
OBJ2_txt
OBJ3_txt
OBJ4_txt
OBJ5_txt
OBJ6_txt
OBJ7_txt
OBJ8_txt

Mini_Adventure	starting	frame	game.	We	have
deliberately	kept	these	pictures	very	simple	in	order	to
encorage	you	to	substitute	your	own	for	the	initial
locations	and	objects	in	the	games	you	develop.	If	you
want	to	get	a	better	idea	of	what	sort	of	pictures	can
be	constructed	then	try	playing	IMAGINE,	the
average	space	taken	up	for	the	pictures	in	this	game	is
less	than	500	bytes	which	should	give	you	a	feel	for
the	sort	of	detail	it	is	possible	to	include.	

Note	that	these	files	are	in	the	format	that	can	be	read
directly	by	Graphics	Designer,	they	must	be	converted
by	the	GDI_1_task	utility	into	the	_APIC	format
before	being	combined	by	GDI_2_task	to	form	the
composite	picture	file	used	by	the	adventure	game.

BUILD_picture_APIC				 This	is	a	command	file	that	can	be	used	to	make
GDI_2_task	construct	the	composite	picture	file
automatically.	The	file	basically	contains	a	list	of
filenames	in	the	order	required	for	the	files	to	be
included	in	the	composite	picture.	

This	may	not	seem	to	important	for	the
Mini_Adventure	since	there	are	only	about	20	pictures
to	consider	and	GDI_2_task	can	accept	the	filenames
directly	from	the	keyboard.	

However,	once	your	game	grows	you	will	quickly
find	the	benefit	of	automating	this	process	(IMAGINE
uses	about	200	separate	pictures	for	example,	it	would
be	extremely	tedious	to	have	to	enter	the	names	of	all
these	by	hand!).	

Note	that	this	file	reconstructs	the	composite	picture
file	that	is	used	with	the	Mini_Adventure.	You	will
have	to	edit	in	additional	filenames	as	you	incorporate
more	locations	or	objects	into	your	game(s).

The	Adventure	Frame	Ready	To	EXEC.	These	two	files	that	follow	are	the

program	and	composite	picture	file	respectively	for	the	Mini_Adventure	starting
frame.	You	have	all	the	required	components	to	reconstruct	each	of	these	files
and	of	course	in	doing	so	you	can	add	or	modify	to	the	features	in	order	to
develop	a	game	of	your	own.

Mini_Adventure The	starting	'framework'	program.
MINI_save_pic The	starting	'framework'	illustrations.

7	System	SuperBASIC	Extensions

CALL_bug_fix This	file	contains	a	patch	for	one	of	the	more	serious
problems	that	is	exhibited	by	early	QL	versions.	This	'bug'
would	result	in	some	of	the	ACT	utility	programs	not
functioning	on	'JM'	or	earlier	machines,	this	file	contains	a
fix	for	this	problem.	It	is	incorporated	automatically	by	the
BOOT	file	and	it's	benefits	will	also	apply	to	any
interpreted	or	compiled	SuperBASIC	program	that	you
might	use.

GDES_bin This	file	contains	several	support	functions	required	by
Graphics	Designer.	These	are	not	intended	for	use	by	other
programs	(or	programmers).

QREST These	four	files	contain	machine	code	extensions
PIC1 that	provide	various	extra	features	on	the	QL.
QFILL1 They	are	all	described	in	some	detail	in	the
QFILL2 manual	and	are	all	loaded	automatically	by	the	BOOT	file.

Note	that	none	of	these	is	ever	needed	by	an	ACT
adventure	game,	only	by	the	various	system	utility
programs	that	YOU	use	to	develop	your	adventure
game(s).

CAPTAINS_mate This	is	actually	a	short	EXECable	task	that	does	absolutely
nothing	at	all!	This	isn't	quite	as	pointless	as	it	sounds
though,	it	is	actually	used	by	the	CAPTAIN_task	program
in	order	to	make	better	use	of	the	memory	on	the	QL.	Note
that	it	is	only	effective	if	the	CAPTAIN	is	started	by	the
special	BOOT	program	CAPTAIN_boot	(or	by	the	main
BOOT	file).

QFILL2_demo_bas SuperBASIC	Tutorial	For	QFILL2.	A	full	description	of

both	QFILL1	and	QFILL2	is	provided	in	the	manual,
however,	we	thought	that	a	'live'	demonstration	of	QFILL2
might	be	helpful.	You	can	LRUN	this	file	at	any	time
AFTER	the	QFILL2	extension	has	been	installed	(by	the
BOOT	file).

RIVER_txt A	Pretty	Graphics	Designer	Picture.	This	isn't	really	part
of	the	adventure	system	except	that	it	does	illustrate	most
of	the	features	provided	by	the	Graphics	Designer	and	the
two	QFILL	routines.	You	can	view	this	picture	either
directly	by	Loading	it	into	Graphics	Designer	or	you	can
convert	it	to	the	_APIC	format	(using	GDI_1_task)	and
then	use	the	PIC1	SuperBASIC	extension	(which	is
installed	automatically	by	the	BOOT	file)	to	reproduce	it
directly	from	SuperBASIC.

IMAGINE The	Example	Adventure	Game.	These	four	files
IMAGINE_save_pic constitute	a	complete	adventure	game	that	was
IMAGINE_BOOT written	entirely	by	ACT.	This	game	will	probably
IMAGINE_CLONE take	you	some	time	to	solve,	even	if	you	are	quite	a

'seasoned'	adventurer	and	it's	no	use	your	looking	for	hints
in	the	manual,	there	aren't	any!	If	you	do	get	stuck	with	it
though	then	we	can	supply	a	'hints'	set	for	the	game	that
should	take	you	quite	some	way	towards	solving	it.	Please
send	us	an	S.A.E.	if	you	do	need	to	consult	this.	Note	that
the	game	can	be	started	by	issuing	the	command	'LRUN
FLP1_IMAGINE_BOOT',	with	your	copy	of	the	ACT
system	in	FLP1_	of	course.	Alternatively,	if	you	want	to
copy	the	game	to	some	other	device	then	simply	LRUN
the	IMAGINE_CLONE	file,	this	will	also	allow	you	to
configure	the	game	to	operate	correctly	from	another
device.

1.7	Adding	Colour	and	Formatting	Screen	Text

ACT	supports	INK	changes	and	use	of	STRIP	for	screen	text	for	drawing	the
player's	attention	to	particular	instructions	and	responses.	Often	this	can	be	used
for	emphasis	or	particular	warnings.	Another	use	of	INK/STRIP	colour	changes
is	for	games	which	respond	to	instructions	such	as	"ASK	FOR...",	or	"SAY....".
The	colour	change	can	be	used	to	indicate	a	response.

Careful	planning	must	be	made	during	the	writing	of	an	adventure,	especially	if
the	adventure	is	intended	for	subsequent	sale	on	a	commercial	basis.	Authors	of
adventure	games	have	no	way	of	predicting,	let	alone	controlling,	the
circumstances	under	which	their	games	are	to	be	played.

Players	may	have	a	monitor	OR	a	TV	available;	there	is	no	way	of	predicting
which	mode	the	game	will	be	played	in.	The	ACT	system	will	cope	with	all
possible	permutations	of	playing	conditions,	with	text	being	displayed	as
required	by	the	mode	used.

Care	must	be	exercised	to	ensure	that	chosen	colours	will	always	be	visible	in
either	mode.	As	can	be	seen	from	the	following	table,	text	displayed	as	blue	in
MODE	8	will	appear	as	black	(and,	therefore,	invisible)	in	MODE	4.	If	blue	is
required,	this	should	be	displayed	on	a	lighter	colour	STRIP	to	ensure	that	it	will
be	seen	in	either	MODE.

NUMBERMODE	4 MODE	8
0 Black Black
1 Black Blue
2 Red Red
3 Red Magenta
4 Green Green
5 Green Cyan
6 White Yellow
7 White White

1.7.1	Inserting	Colour	with	the	MSGedt	Utility

INK	and	STRIP	colours	are	always	reset	to	their	default	values	of	5	and	0,
respectively,	when	ACT	re-enters	the	pre-parser	to	get	the	player's	next
command.	The	player's	commands	will	always	be	shown	in	these	default
colours.

After	a	command	is	entered,	the	INK	is	changed	to	7	(white)	BEFORE	the
player	program	starts.	This	change	also	occurs	whenever	the	event	program	runs.

While	most	text	editors	(NOT	Quill)	can	be	used	to	produce	the	source	files
required	for	compiling	with	TXTcom_task,	MSGedt	includes	the	facility	for
indicating	the	colour	changes	as	they	will	occur	in	an	adventure.	If	any	other	text
editor	is	used,	the	control	codes	will	have	to	be	entered	manually,	when	and	as
required.	See	Section	1.7.2	for	further	information.

As	you	enter	messages,	you	can	enter	command	codes	for	colour	changes	which,
like	the	embedded	commands	in	programs	like	Quill,	are	indicated	as	direct
changes	to	the	text	entered	on	screen;	that	is,	the	colour	change	is	reflected	in	all
text	following	the	command.	Changes	of	colour	are	made	with:

<CTRL>	&	<n>	-	INK	change,	where	'n'	is	a	number	0	to	7.
<ALT>	&	<n>	-	STRIP	change,	where	'n'	is	a	number	0	to	7.
<SHIFT>	&	<left>	or	<right>	-	Cursor	repositioning	in	steps	of	200
characters.

WARNING:

UNDER	NO	CIRCUMSTANCES	SHOULD	<CTRL>	&	<ALT>	&	<7>	BE
PRESSED	AT	THE	SAME	TIME.	THIS	WILL	CRASH	THE	QL!

Incorrect	colour	control	codes	are	edited	in	the	same	way	as	any	other	character
with	<CTRL>	&	<left>	or	<right>.	The	three	characters	used	by	the	ACT	system
(not	seen	on	screen,	hence	called	embedded	commands)	are	treated	as	a	single
character;	when	they	are	deleted,	the	characters	following	the	code	will	revert	to
their	original	colour.

When	using	the	left	or	right	cursor	key,	the	entire	screen	is	re-drawn	whenever
the	cursor	moves	past	a	control	group	(in	either	direction)	or	whenever	a	control
group	is	deleted,	thus	acting	as	a	reminder	of	the	location	of	the	control	groups.

This	also	shows	up	the	use	of	colour	changes	which	have	been	input	accidentally
as	a	double	re-draw.

The	MSGedt	utility	can	split	long	messages	between	successive	display	screens.
If	a	very	long	message	is	edited,	the	parts	not	displayed	may	be	selected	by
moving	the	cursor	past	either	end	of	the	screen	display.

1.7.2	Considerations	for	Changes	of	Text	Colour

The	embedded	(and	therefore	not	normally	visible	when	used	in	the	MSGedt
editor)	colour	commands	are	&#n	and	&$n	for	INK	and	STRIP	changes,
respectively.	n	represents	the	number	of	the	colour,	0	to	7.	If	a	standard	text
editor	is	used,	the	control	codes	must	be	typed	in	as	required.

If	any	of	these	characters	are	used	individually,	they	will	appear	in	the	same	way
other	characters	do.	As	far	as	possible,	ACT	will	ignore	the	presence	of	valid
control	groups	when	formatting	the	screen	layout.	For	example,	if	the	line:

			|This	is	a	line	which	just	fits	the	screen|

			|width	after	the	word	screen.													|

fits	the	ACT	display	screen	as	shown	here,	the	inclusion	of	some	colour	changes
shouldn't	alter	this.	If	the	colour	control	groups	are	put	around	the	word	"which",
so	as	to	provide	an	inverse	effect	of	black	INK	on	a	white	STRIP,	internally,	to
the	system,	the	command	change	would	look	like

																�&$7which&$0

If	the	control	characters	were	counted,	the	screen	might	end	up	as:

			|This	is	a	line	which	just																|

			|fits	the	screen	width	after	the	word					|

			|screen.																																		|

since	the	12	control	characters	would,	if	counted	as	part	of	the	line	length,	leave
no	free	room	for	the	next	word	after	the	word	"just".	In	fact,	this	line	would
actually	be	printed	correctly	by	ACT,	since	it	knows	that	it	should	ignore	the	12
control	codes.

There	is	a	situation	where	ACT	might	not	get	it	quite	right.	This	can	occur	where
the	control	groups	are	used	in	the	same	way	as	above,	but	the	word	happens	to

come	near	the	end	of	a	line.	In	the	example,	if	the	word	"screen"	were
highlighted	instead	of	"which",	ACT	would	print	the	message	as:

			|This	is	a	line	which	just	fits	the							|

			|screen	width	after	the	word	screen.						|

In	this	case,	ACT	is	unable	to	determine	that	the	word	"screen"	will	fit	into	the
space	at	the	end	of	the	first	line,	and	the	format	is	modified	as	shown.	One	way
to	minimise	the	chances	of	this	occurring	is	to	try	to	arrange	for	the	colour
changes	to	be	staggered	wherever	possible.	It	is	better	to	use:

			this	is	an	example		colour		change

rather	than:

			this	is	an	example	colour	change

Both	will	produce	the	same	alterations	of	colour,	but	the	first	is	less	likely	to
suffer	from	a	change	of	display	format.

In	the	preceding	examples,	the	control	codes	are	shown	as	they	appear	internally
to	the	ACT	system	or	if	used	in	a	standard	text	editor.	If	used	in	the	MSGedt
utility,	they	are	entered	as	detailed	in	Section	1.7.

1.7.3	Split-MODE	Screens

This	feature	is	added	by	the	use	of	a	machine-code	routine	built	into	the	ACT
system	when	you	use	either	of	the	special	versions	of	LAST_dta	that	incorporate
the	additional	code	required	to	support	illustrations.

The	use	of	split	modes	allows	the	illustrations	of	an	adventure	to	be	in	mode	8,
that	is	to	use	8	display	colours,	while	allowing	the	text	to	be	in	mode	4	and	so
benefit	from	smaller	character	size	and	increased	amount	of	text	on	screen.

A	problem	can	occur	when	using	split-mode	screens	on	some	QLs	with	some
types	of	memory	expansion.	Depending	on	the	type	of	memory	expansion
installed,	it	is	possible	for	the	code	that	controls	the	mode	switching	to	"switch"
at	the	wrong	place	on	the	screen.

This	is	only	likely	to	happen	if	you	are	using	large	areas	from	the	Common

Heap.	As	one	example,	most	types	of	RAM	disks	will	certainly	cause	problems
if	used	in	a	game.

If	you	find	that	the	mode	change	occurs	before	the	end	of	the	picture	window
while	testing	your	game,	you	should	re-start	the	test	after	removing	whatever
program	or	facility	is	occupying	low	memory.	If	in	doubt,	re-boot	and	re-run
your	game	without	running	any	other	jobs	first.	This	problem	will	not	normally
occur	when	most	other	programs	are	running	along	with	your	game,	and	it
should	never	happen	on	an	unexpanded	QL.

1.7.4	Formatting	Messages

As	explained	in	Section	1.2,	messages	are	normally	formatted	automatically	by
the	system	when	they	are	printed	to	the	text	window	in	the	completed	game.
There	will	be	occasions	when	you	might	want	to	force	a	message	into	a	pre-
determined	format,	and	this	is	accommodated	by	ACT	through	the	use	of	a
special	control	character.

The	character	'<'	is	accepted	by	the	message	editor	and	text	compressor	but	it
isn't	reproduced	by	the	completed	game.	Instead,	each	such	character	is
converted	to	a	'newline'	before	it	is	printed,	so	that	a	message	may	be	forced	to
any	required	format.

For	example,	say	the	following	message	is	required	in	exactly	this	format:

				The	wizard	says,

				

						"Begone	weakling,	before	I	turn	you	into	a	toad"

					and	waves	his	magic	wand.

In	this	case,	you	would	enter	the	message,	using	MSGedt_task	as	follows.

				The	wizard	says,<<		"Begone	weakling,	before	I	turn	you	into	a

				toad"<<and	waves	his	magic	wand.

2.0	BEGINNERS	GUIDE	TO	USING	ACT

This	section	is	an	introduction	to	the	ACT	system	and	how	it	works.	It	also
describes	the	use	of	the	utility	programs	and	shows	how	to	add	or	modify	the
basic	building	blocks	of	the	adventure	game	produced,	the	locations	and	objects.

The	following	Section	3	and	Section	4,	contain	more	detailed	information	and	in
particular	show	how	to	modify	the	two	ACT	programs	that	control	the	logic	of
the	final	game.

2.0.1	The	CAPTAIN	-	ACT's	Front	End

The	CAPTAIN	provides	a	simple	way	of	selecting	the	various	utility	programs
in	ACT.	The	CAPTAIN	is	started	automatically	by	the	BOOT	program	on	the
ACT	disk.	Alternatively,	it	may	be	invoked	by	using	the	EXEC	command	(if	you
are	unfamiliar	with	this,	then	the	notes	in	Section	2.1.1	will	help	you).

2.0.2	The	CAPTAIN	and	Memory

The	CAPTAIN	uses	up	quite	a	lot	of	memory,	although	there	will	be	enough	left
to	allow	you	to	make	any	modification	to	the	Mini_Adventure,	even	with	an
unexpanded	QL.	However,	should	you	ever	find	that	there	isn't	enough	memory
free	to	allow	some	operation,	then	the	CAPTAIN	provides	a	simple	way	round
this.	If	at	any	stage	you	need	more	space	in	order	to	use	any	of	the	utilities,	you
should	select	the	option	to	"ABORT	AFTER	THIS	STAGE".	This	will	cause	the
CAPTAIN	to	stop	as	soon	as	it	has	started	the	next	utility	you	select,	thus	freeing
an	extra	35K	of	memory	for	use.

Following	this	procedure	will	also	mean	that	you	will	have	to	re-start	the
CAPTAIN	after	the	utility	has	finished	if	you	want	to	continue	using	the	front
end.

2.0.3	The	CAPTAIN's	Hot-Key	Re-awakening

Normally,	the	CAPTAIN	will	"sleep"	as	soon	as	it	starts	a	utility	program	and
will	only	become	re-activated	when	the	job	has	finished.	The	use	of	the	special
"Hot-Key"	will	re-awaken	the	CAPTAIN	at	any	time,	however,	giving	you	the

option	to	abort	the	utility	if	you	wish.

The	CAPTAIN	can	also	be	operated	with	the	automatic	re-awake	option
disabled,	in	which	case	the	use	of	the	"Hot-Key"	is	the	only	way	to	re-activate	it,
either	while	the	utility	is	still	running	or	once	it	has	finished.

2.1	Adding	a	New	Location	to	the	Mini_Adventure

Adding	a	new	location	to	the	game,	or	just	modifying	an	existing	one,	involves
making	modifications	to	two	files	and	then	reconstructing	the	game	from	the
component	parts.

The	files	that	must	be	changed	are	the	location	message	and	the	location	data
files,	which	are	called	LOCN_msg	and	LOCN_dta	respectively	in	the
Mini_Adventure.

Once	these	files	heve	been	edited	by	MSGedt_task	and	LOCedt_task	as
required,	various	stages	have	to	be	passed	to	produce	the	modified	game	in	its
normal	running	form.	Table	1	shows	everything	necessary	for	the	modification
process,	but	the	following	'dry	run'	may	be	of	some	assistance.

Before	you	start	with	the	tutorial	examples	that	follow,	you	should	copy	the
various	data	files	that	you	will	need	to	use	onto	a	scratch	disk.	For	the	examples
it	is	assumed	that	the	relevent	files	are	contained	on	a	disk	in	drive	flp2_.	You
should	copy	the	following	files	(after	you	have	formatted	the	scratch	medium):

ACT,	LOCN_msg,	OBJT_msg,	GEN_msg,	PLAYER_prog,	EVENT_prog,
LOCN_dta,	OBJT_dta,	WORD_dta,	LAST_dta,	LASTpic_dta,
LASTpic_QFILL_dta,	PROG_dta	and	finally	TEXT_dta.

Don't	worry	if	you	aren't	sure	what	all	these	files	are	used	for;	we'll	come	to	that
shortly	(or	maybe	longly!).

2.1.1	Editing	the	Location	Message	File

As	outlined	in	Section	1,	ACT	divides	text	messages	into	three	separate	groups.
Each	of	the	three	message	source	files	contains	lines	of	text,	and	each	line
represents	a	single	message	unit.

Messages	can	be	of	any	length	up	to	a	maximum	of	1600	characters,	and	most	of
the	likely	QL	character	set	is	allowed.

The	utility	program	used	to	edit	message	files	is	MSGedt_task.	This	is	run	in	the

same	way	as	the	other	ACT	utilities.	For	example,	you	can	start	MSGedt	by
entering	the	command:	EXEC_W	flp1_MSGedt_task	with	your	working	backup
copy	of	the	ACT	disk	in	drive	1.	There	is	an	alternative	way	of	running	tasks	on
the	QL,	though.

If	you	use	the	command:	EXEC	flp1_MSGedt_task,	the	program	will	run	as
before,	but	with	one	important	difference.	The	EXEC_W	command,	used	in	the
earlier	case,	suspends	the	SuperBASIC	interpreter,	while	the	MSGedt	program
runs.

This	can	be	useful,	since	it	avoids	either	of	the	separate	jobs	from	receiving
input	commands	meant	for	the	other.	On	the	other	hand,	it	can	be	more	useful	to
retain	control	of	SuperBASIC	so	that	you	can	use	it	to	inspect	directories	or	even
delete	unwanted	files	while	any	of	ACT's	programs	are	running.

If	you	use	the	EXEC	command,	you	will	need	to	know	how	to	direct	the
commands	you	enter	to	either	SuperBASIC	or	to	the	alternative	program(s).
QDOS	uses	<CTRL>	&	<C>	(hold	down	the	<CTRL>	key	and	then	press	<C>)
to	switch	input	between	jobs.	The	job	that	input	is	currently	directed	to	is
indicated	by	showing	its	cursor	flashing.

If	this	is	new	to	you,	then	you	might	try	running	the	Mini_Adventure	using	the
EXEC	command	and	experimenting	with	selecting	either	SuperBASIC	or	the
game	for	your	input	commands.

Once	it	has	started,	MSGedt	asks	if	you	want	to	edit	an	existing	file.	Choose	the
default	answer	of	<ENTER>	(or	Y	for	Yes).	You	will	be	asked	for	the	name	of
the	file	to	be	edited.	Respond	with	flp2_LOCN_msg.

MSGedt,	in	common	with	the	other	editing	utilities	in	ACT,	will	automatically
create	a	backup	of	the	file	you	are	editing.	The	backup	will	have	the	same	name
as	the	file	you	are	editing,	except	that	it	will	have	the	extension	'_BAK'	added	to
it.

This	backup	process	will	be	performed	every	time	you	run	an	ACT	editing
utility,	and	any	existing	backup	of	the	edited	file	will	be	deleted.	If	you	make	a
mistake	in	editing	any	file,	you	can	always	recover	your	original	file	by
replacing	the	file	with	the	backup	copy.

For	example,	if	you	make	a	mistake	while	editing	the	LOCN_msg	file	with
MSGedt_task,	the	following	two	lines	should	be	typed	in	(after	quitting	the
editor):

DELETE	flp2_LOCN_msg
COPY	flp2_LOCN_msg_BAK	TO	flp2_LOCN_msg

in	order	to	completely	recover	the	original	file.	Alternatively,	if	you	have	a
toolkit	available	which	supports	renaming	files,	you	can	RENAME	the	file	as
above.

Once	MSGedt	has	read	the	file,	it	will	prompt	for	the	line	number	you	wish	to
edit.	Type	in	'3',	and	you	will	see	the	long	description	of	the	starting	location	in
the	Mini_Adventure	displayed	on	the	screen.

This	displayed	line	is	now	OPEN	for	editing,	which	is	done	using	the	normal
cursor	controls	in	the	same	way	that	a	line	of	a	SuperBASIC	program	is	edited
by	the	interpreter's	EDIT	command.

To	add	another	location	to	the	Mini_Adventure,	start	by	altering	the	starting
description	to	indicate	that	there	is	a	path	available	to	the	new	location.	The	new
room	will	be	to	the	west	of	the	small	cave,	so	try	modifying	the	message	to	be
"This	is	a	small	cave.	It	looks....passable	routes	to	the	southeast,	south	and
west".

Once	the	line	is	altered,	pressing	the	<ENTER>	key	will	cause	the	line	to	be
CLOSED	and	any	changes	incorporated.

MSGedt	will	next	prompt	for	a	new	message	number	to	edit.	If	you	examine	the
map	of	the	Mini_Adventure	in	Figure	1,	you	will	see	that	the	last	location
number	used	is	7.	This	means	that	the	next	location	will	be	number	8.

Each	location	uses	2	messages	in	the	location	message	file:	one	for	the	short
location	description	and	one	for	the	long.	Section	3.3	describes	the	meaning	of
the	various	messages	in	both	the	object	and	the	location	files.

You	need	to	know	that	the	descriptions	of	location	number	'N'	are	contained	in
location	messages	N*2	(short)	and	N*2+1	(long).	So	the	new	location	will	use
location	messages	number	16	and	17	for	the	short	and	long	descriptions

respectively.

OPEN	message	'16'	for	editing.	You	will	find	that	it	has	no	text	in	it;	you	have	to
enter	the	short	description	you	want	for	the	new	location.	Let's	say	you	call	this
"The	new	room.".	Once	you	have	finished	the	short	description,	you	can	go	on	to
the	next	message	number	(17)	by	pressing	the	<DOWN>	cursor	key.

Alternatively,	you	could	have	CLOSED	message	16	by	pressing	the	<ENTER>
key,	but	this	will	subsequently	require	the	specification	of	Message	17	in
response	to	the	resulting	prompt.	It	is	quicker	to	use	the	<UP>	or	<DOWN>
keys	when	editing	sequential	messages.

Once	you	have	message	17	OPEN,	enter	a	suitable	long	description	to	match
whatever	your	short	description	was	and	press	<ENTER>.	To	stop	the	MSGedt
program,	select	a	negative	message	number	for	editing.	This	will	cause	the
program	to	delete	the	original	file	and	replace	it	with	your	modified	data.

2.1.2	Editing	the	Location	Data	File

The	data	controlling	the	geographical	structure	of	the	Mini_Adventure	is
contained	in	the	file	LOCN_dta	and	is	edited	by	the	program	LOCedt_task.
EXEC	the	module	in	the	same	way	as	the	other	ACT	utilities	and	specify	the
LOCN_dta	file	for	editing.

The	next	prompt	will	ask	which	location	to	edit.	It	will	be	necessary	to	add	the
new	location	(8),	but	first	a	modification	must	be	made	to	location	'1',	in	order	to
introduce	a	path	that	will	allow	the	player	to	move	to	the	new	location.

After	you	specify	location	'1',	the	program	will	display	the	contents	of	the
various	parameters.	There	will	be	11	parameters	(numbered	0	to	10)	displayed,
although	you	will	see	that	there	is	room	for	up	to	127.

Parameters	0	to	9	control	the	'map'.	They	work	as	follows:	Parameter	0	is	for
routes	to	the	NORTH;	it	has	a	value	of	2	and	means	that	travelling	NORTH	from
location	'1'	will	lead	to	location	2.	This	can	be	confirmed	by	checking	the	map	in
Figure	1.

Parameter	1	represents	the	direction	NORTHEAST	and	has	a	value	of	0.	This

means	that	there	is	no	route	northeast	from	location	1,	which	can	be	verified
from	the	map.

Each	successive	parameter	represents	a	different	direction.

					 0	= North	or	0	degrees.
	 1	= Northeast	or	45	degrees.
	 2	= East	or	90	degrees.
	 3	= Southeast	or	135	degrees.
	 4	= South	or	180	degrees.
	 5	= Southwest	or	225	degrees.
	 6	= West	or	270	degrees.
	 7	= Northwest	or	315	degrees.
	 8	= Up.
	 9	= Down.

The	direction	parameters	of	location	1	are	zero	except	for	0	(value	2),	3	(value	4)
and	4	(value	6).	As	a	practical	exercise,	we	want	to	add	a	new	route	to	the	west
which	will	lead	to	location	8.	Use	the	cursor	keys	to	select	parameter	6	and	type
in	the	new	value	for	this	direction	(8).

Once	this	is	done,	you	can	press	<ESC>,	which	will	call	up	a	menu	of	options.
One	of	these	is	'E'	for	exit.	Select	'E',	which	will	repeat	the	prompt	for	the	next
location	number	to	edit.	Now	we	can	add	the	new	location:	respond	with	an
input	of	8.

For	now	we	will	just	add	a	single	route	out	of	location	8	back	to	location	1	by
changing	parameter	2	to	a	value	of	'1'.	Parameter	10	is	used	for	flag	data	that
allows	extra	information	about	each	location	to	be	included.

There	are	8	flags	available	in	each	parameter,	but	only	2	(either	0	or	1)	are	used
so	far	with	location	data	parameter	10.	The	second	flag	(bit	1)	is	used	to	control
whether	a	location	is	light	or	dark,	a	value	of	0	meaning	dark	and	1	light.

To	make	the	new	location	light,	use	the	cursor	keys	to	select	parameter	10,	then
press	<ESC>.	Press	'B'	to	select	the	BINARY	input	option,	which	will	allow	you
to	alter	the	state	of	the	8	flags	in	parameter	10	individually.

Use	the	left	or	right	cursor	to	select	flag	number	1	and	then	press	'SPACE'	to
alter	the	flag	to	'1'.	Successive	presses	of	the	space	key	will	toggle	the	selected
flag	between	'1'	and	'0'.

This	completes	the	definition	of	the	new	location.	To	complete	the	editing	of	the
LOCN_dta	file,	use	<ESC>	to	select	the	menu	and	respond	with	'Q'	(for	QUIT).

2.2	Adding	a	New	Object	to	the	Mini_Adventure

This	involves	exactly	the	same	steps	as	for	adding	a	new	location	to	the	game,
except	that	the	OBJT_msg	and	OBJT_dta	files	must	be	altered	instead	of	the
location	files.

The	OBJT_msg	file	is	edited	in	exactly	the	same	way	as	the	LOCN_msg	file,
using	the	MSGedt_task	utility.	From	Table	4	you	can	see	that	the	next	object	will
be	number	'9'.

2.2.1	Describing	Objects	in	the	Text

Each	object	has	4	messages	associated	with	it.	These	contain	short	and	long
descriptions,	similar	to	location	messages,	as	well	as	text	used	to	service	a
game's	'EXAMINE'	and	'READ'	commands.

Descriptive	text	will	have	the	word	'A'	or	'SOME'	prefaced	at	the	beginning	of
game	information,	as	well	as	a	full	stop	at	the	end	when	it	is	printed	out	by	the
'player'	program.

For	example,	this	means	that	you	would	not	describe	a	black	stick	as	'A	BLACK
STICK.',	but	as	'BLACK	STICK'.	Use	the	MSGedt	editor	to	examine	some	of
the	objects	currently	defined,	in	order	to	see	the	required	formats.

Object	N	uses	message	numbers	4*N	to	4*N+3	for	the	short,	long	'EXAMINE'
and	'READ'	text,	in	that	order.

You	can	make	up	any	new	description	you	want	for	your	new	object.	Try
creating	a	new	note.	Starting	with	object	message	32	(4*8),	enter	the	messages:

32. note
33. special	message	on	a	big	sheet	of	paper
34. This	is	a	large	sheet	of	paper	with	a	message	printed	on	it.
35. The	message	reads	'Well	done,	you've	added	a	new	object	and	location.

and	exit	the	editor.

2.2.2	The	Object	Data

The	Object	data	file	OBJT_dta	is	edited	by	the	LOCedt	utility	in	the	same	way
as	the	Location	data	file	LOCN_dta.	There	will	be	additional	parameters	to	edit
(numbers	0	to	18),	and	you	can	see	from	Table	2	what	each	one	is	used	for.	Edit
the	following	values:

P0=0 P1=130 P2=0 P3=131 P4=0
P5=132 P6=0 P7=133 P8=0 P9=0

These	define	which	words	will	be	used	to	describe	the	object.

P10=8 The	Location	it	will	start	out	in
P11=0 Determines	that	it	won't	be	contained	in	any	other	object
P12=4 The	weight	of	the	object
P13=4 The	size	of	the	object
P14=3 The	surface	area	of	the	object
P15=11010000 (these	flags	control	various	functions,	see	Table	2)
P16=0 Used	for	restrictions;	none	apply	to	the	new	note

P17=0 This	would	only	be	non-zero	if	the	object	is	to	be	on	fire
initially	(when	the	game	starts)

P18=00000000
	 (these	flags	control	various	functions,	see	Table	2))

When	this	is	completed,	exit	the	editor	as	before	in	order	to	update	the	object
data	file.

2.3	Producing	the	Compressed	Text	File

This	completes	the	creation	of	the	new	location	and	object.	The	modified	texts
are	next	combined	with	the	general	message	data,	and	the	format	is	compressed
by	the	utility	TXTcom_task.

This	program	is	run	in	the	same	way	as	the	MSGedt	program.	The	first	question
asked	by	the	TXTcom	program	is	explained	in	more	detail	in	Section	2.6.2.
Reply	with	<ENTER>,	causing	the	program	to	use	the	default	reply,	and	go	on	to
the	next	prompt.

The	program	will	now	ask	for	the	three	input	files	in	turn.	Enter	the	file	names
(including	the	drive	they	are	contained	on),	terminating	each	one	by	pressing
<ENTER>.

If	you	make	a	mistake	in	the	file	description,	the	program	will	repeat	the	prompt.
There	may	be	a	pause	between	successive	file	prompts	and	a	slightly	longer	one
after	the	third	file	is	entered.	After	this	final	pause	the	program	will	ask	for	the
output	file	name.

This	can	be	any	file	name	on	any	device,	but	for	now	specify	flp2_TEXT_dta.
The	program	will	then	read	through	each	file	in	turn	and	produce	the	output	data.
At	the	end	of	the	process	the	program	will	report	the	compression	factor
achieved	and	then	stop.

2.4	Producing	the	Compiled	Program	File

If	you	made	any	changes	to	either	of	the	two	system	programs,	PLAYER_prog
or	EVENT_prog,	you	will	need	to	re-compile	them	to	form	a	modified	version
of	PROG_dta.	If	no	changes	have	been	made,	use	the	version	of	PROG_dta
supplied	and	proceed	from	Section	2.5.

This	will	only	have	to	be	done	again	after	changes	or	additions	are	made	to
either	of	the	programs.	Changes	may	be	made	by	following	the	examples	in
Section	4	or	may	be	of	your	own	design.	You	may	also	have	incorporated
changes	if	you	add	one	of	the	ACT	"add-on"	kits,	such	as	the	Video	Interface	kit
(this	is	included	as	part	of	ACT	Special	Edition).	Section	3	gives	details	of	the
ACT	system	language	and	of	the	structure	of	the	Mini_Adventure	programs	that
will	help	you	with	this.	To	compile	the	two	programs,	use	the	utility
BASasm_task.	Run	the	program	in	the	same	way	as	the	other	ACT	utility
programs.

The	compiler	will	prompt	for	two	program	file	names.	These	should	be
flp2_PLAYER_prog	and	flp2_EVENT_prog.	Two	more	questions	will	follow.
The	first	question	asks	for	the	listing	file	name.	This	could	be	a	disk	or
microdrive	file,	but	for	now	specify	SCR,	to	print	any	messages	to	the	screen.
The	following	question	refers	to	including	SOURCE	line	numbers	in	the
compiled	code.	Selecting	this	option	allows	a	detailed	report	of	where,	and	in
which	program,	any	errors	that	might	occur	when	your	game	is	running	are
located.	You	should	normally	select	to	INCLUDE	source	line	numbers;	only
exclude	them	in	order	to	reduce	the	length	of	your	game	once	it	is	completed	and
FULLY	tested.

At	the	end	of	this	phase,	the	compiler	will	ask	for	the	output	file	name.	Respond
with	flp2_PROG_dta.	The	program	will	proceed	with	pass	2.	At	the	end	of	the
second	pass,	the	compiled	form	of	the	two	ACT	programs	will	be	on	your
scratch	disk.

2.5	Linking	the	Modules	to	Form	a	Completed	Game

Once	the	steps	outlined	in	Sections	2.1	to	2.4	have	been	taken,	it	only	remains	to
use	the	LINKER_task	utility	to	automatically	link	together	the	7	files	that	make
up	a	completed	ACT	adventure	program.

Run	LINKER_task	in	the	same	way	as	the	other	utilities.	The	linker	will	prompt
for	the	input	files	in	turn	and,	in	addition,	will	assume	the	names	specified	by	the
defaults	indicated.

All	that	is	necessary	for	most	of	the	input	specifications	is	to	press	<ENTER>.
The	indicated	file	will	then	be	read	from	flp2.

After	all	of	the	input	files	have	been	read,	LINKER	will	ask	for	the	output
device	and	filename.	Specify	any	file	name	you	wish	on	your	scratch	disk:	this
file	will	be	the	revised	version	of	the	game.

Once	the	output	file	is	completed	(when	the	drive	stops	running),	you	will	find
the	new	version	of	the	Mini_Adventure	ready	to	run.	Provided	no	errors	have
been	made,	you	will	find	the	new	room	and	the	extra	note	that	you	have
included.

2.6	Tips	on	Using	the	Utility	Programs

The	operation	of	the	utility	programs	is	mostly	self-explanatory,	but	the
following	notes	may	help	with	any	points	that	are	less	clear	and	also	provide	an
insight	into	some	of	the	operational	principles	that	should	be	of	help,	once	you
are	completely	familiar	with	ACT.

2.6.1	MSGedt_task

The	use	of	MSGedt	to	update	the	three	message	files	is	not	essential.	Any	text
editing	program	could	be	used;	however,	MSGedt	includes	some	features	to
make	it	ideally	suited.

The	text	compression	process	supports	most	of	the	normal	text	characters
available	on	the	QL.	However,	there	are	some	characters	that	you	might	try	to
use	that	are	not	included.	If	you	attempt	to	use	one	of	the	'illegal'	characters,
MSGedt	will	report	an	error	when	you	try	to	close	the	line.	The	message	will	not
be	incorporated	but	instead	re-presented	for	editing	with	the	illegal	character(s)
replaced	by	question	marks	(which	are	allowed).

You	then	have	the	option	of	either	re-closing	the	line,	which	will	then	be
accepted	with	the	'?'	substitutions,	or	of	inserting	alternative	characters.

If	there	is	not	enough	room	on	the	device	containing	the	file	to	be	edited	for	the
automatically	generated	backup,	this	will	be	reported	and	the	program	will
continue	with	editing.

At	this	point	there	will	be	no	free	space	on	the	destination	device,	since	the
partially	complete	backup	will	have	completely	filled	it.	You	may	still	continue
with	the	editing	session,	but	you	must	be	aware	of	a	potential	problem	that	could
subsequently	occur.

Provided	the	editing	session	does	not	increase	the	size	of	the	data	file	to	an
extent	that	it	requires	more	Sectors	to	store	it,	all	will	be	OK.	When	you	exit	the
program,	the	file	handling	sequence	is:	the	original	file	is	deleted	(leaving	room
for	the	edited	replacement)	and	subsequently	updated	by	the	new	file.	If	the
edited	version	is	longer,	there	will	not	be	enough	room	for	it	and	you	will	be	left

with	a	partially	complete	backup	and	a	partially	complete	original	as	well!

Unless	you	have	a	separate	backup	elsewhere,	you	will	now	be	left	without	a
complete	version	of	your	file.	There	are	two	possible	ways	to	avoid	this
problem.	If	you	have	run	the	editor	with	the	EXEC_W	command,	the	best
solution	is	to	replace	the	source	disk	(or	microdrive)	with	another	scratch
medium	which	has	enough	room	to	contain	the	new	file	before	you	exit	the
program.	In	this	case	the	original	file	will	remain	intact	on	the	first	medium
(although	the	backup	is	incomplete).

If	you	used	the	EXEC	command,	you	also	have	another	solution.	This	is	to
switch	to	SuperBASIC	and	delete	the	backup	before	you	exit	the	editor.	This	will
usually	leave	enough	room	to	contain	the	edited	file,	but	there	is	a	small	risk	of	a
problem	with	either	the	medium	or	the	QL	itself,	which	could	still	leave	you
without	a	valid	copy	of	the	file.	To	be	safe,	the	first	solution	is	best.

MSGedt	has	one	limitation	that	you	might	find	puzzling.	This	is	that	once	a
given	message	slot	is	used,	it	cannot	be	completely	removed.	Also,	you	can	only
add	new	messages	sequentially.

For	example,	if	the	last	message	number	in	one	of	the	source	files	is	'10',	you
will	find	that	the	next	number	you	try	to	add	must	be	'11'.	If	you	try	to	select
message	12	without	first	adding	number	11,	you	will	get	an	error.

Once	you	have	added	message	11,	you	can	add	12.	Also,	once	a	message	has
been	created	for	the	first	time,	you	can	reduce	it	so	that	it	contains	no	characters,
but	this	will	not	actually	remove	the	message	completely.	For	example,	once
message	11	and	12	have	been	added,	you	could	edit	message	11	to	contain	no
characters	by	deleting	all	of	the	text	in	it.	Message	12	will	still	be	intact,
however,	and	message	11	will	still	be	there;	you	could	even	print	it	out	in	the
completed	game.

The	reason	for	doing	things	in	this	way	is	to	ensure	that	the	numbering	of	the
messages	is	never	altered	after	they	are	created.	If	the	'removal'	of	message	11
had	been	complete,	message	number	12	would	then	have	occupied	the	11th	slot.
This	would	require	that	any	reference	to	it	in	either	of	the	two	ACT	system
programs	be	altered	to	match.	It	was	simpler	to	include	the	restriction.

2.6.2	TXTcom_task

The	text	compressor	will	ask	a	question	that	requires	some	explanation.

The	question	is:

Change	the	default	maximum	word	length	(Y/N,	default	=	N)?

To	understand	what	this	means	you	must	first	have	some	idea	how	the	text
compressor	works.	The	process	of	reducing	the	size	of	the	text	is	done	in	two
stages.

The	primary	stage	involves	re-coding	all	the	characters	to	a	more	compact
format.	This	format	uses	control	codes	to	achieve	switching	between	upper	and
lower	case	characters	as	well	as	between	the	two	character	sets	that	ACT	uses
(internaly	in	a	completed	game).

The	first	character	set	includes	all	the	alphabetical	characters	and	most	of	the
common	punctuation	symbols.	The	second	set	includes	numbers	and	some	of	the
less	common	characters.	The	application	of	this	process	reduces	the	text	size	to	a
maximum	of	67%	of	the	original	text,	although	changes	between	upper	and
lower	case	and	occurrences	of	characters	that	are	in	the	second	set	will	usually
reduce	the	improvement	to	about	75%.	TXTcom	improves	on	this	by	means	of	a
second	stage.	This	involves	the	replacement	of	words	that	are	commonly	used	in
the	three	text	files	by	special	codes	that	typically	use	only	2	bytes	of	memory.
This	process	is	quite	complex,	and	TXTcom	will	take	time	deliberating	which
words	to	substitute	in	order	to	obtain	the	greatest	improvement.

In	making	this	decision,	the	program	must	be	told	a	maximum	length	for	words
that	it	will	consider	replacing.	Any	word	longer	than	this	value	cannot	be
included	in	the	process.	The	default	value	is	26	characters	maximum,	which
should	be	adequate	for	most	situations.

There	are	two	situations	when	altering	the	default	might	be	beneficial.	The	most
likely	is	when	the	three	message	files	are	so	large	that	the	working	space
available	to	TXTcom	becomes	full.

When	this	happens,	a	message	will	be	printed	to	the	screen	while	the	compressor

is	working.	The	compression	process	will	not	stop,	and	it	is	not	necessary	to
make	any	changes.	The	only	penalty	is	that	some	words	are	simply	never
considered	for	substitution,	since	there	is	no	room	left	for	TXTcom	to
'remember'	them	in	order	to	see	if	it	will	be	worth	while	tokenising	them.

If	you	re-run	the	compressor	but	reduce	the	maximum	word	length,	the	program
will	be	able	to	'remember'	more	of	the	words	it	finds,	which	may	result	in	an
improved	compression	ratio,	if	more	suitable	words	for	substituting	are	found.	In
specifying	the	new	word	length,	you	should	add	6	to	the	new	maximum	length
before	entering	the	value	(for	a	maximum	length	of	14	characters,	you	would
enter	20).	The	second	situation	is	the	reverse	of	this.	If	you	have	several	words
in	your	text	that	are	longer	than	26	characters,	it	might	be	beneficial	to	increase
the	maximum.

From	TXTcom's	point	of	view,	a	word	is	any	string	of	characters.	If	you	used	a
sequence	of	'-'	symbols	to	underline	a	particular	message,	this	would	be	a	legal
'word'	for	TXTcom	to	consider	replacing.	To	be	replaced,	however,	a	word	must
occur	at	least	twice;	upper	and	lower	case	are	not	the	same.

In	order	to	achieve	the	most	efficient	compression	ratio,	TXTcom	works	best
with	long	alphabetical	messages	which	are	predominantly	either	upper	or	lower
case.	The	use	of	frequent	case	changes,	or	of	numerical	characters,	or	of
punctuation	marks	(other	than	",.'!()-	or	?")	will	reduce	its	performance.

The	ratio	that	the	program	specifies	at	the	completion	of	the	compression
process	is	the	ratio	of	the	length	of	the	output	file	and	the	sum	of	the	lengths	of
the	three	input	files.	The	output	file	contains	additional	data	used	by	the	ACT
base	module	to	identify	the	location	of	each	message	in	the	file.	This	pointer
data	uses	up	4	bytes	per	message,	and	if	this	extra	length	is	taken	into	account,
you	will	find	that	the	true	performance	of	the	compressor	is	actually	better	than
reported.

The	reported	ratio	for	the	three	files	supplied	with	the	Mini_Adventure	is	68%.
The	actual	text	compression	is	62%	for	these	files	if	the	extra	data	is	counted
separately.	With	longer	text	files	it	is	quite	possible	for	the	utility	to	achieve
better	than	50%	real	reduction	in	text	length	(IMAGINE	achieves	a	true
compression	ratio	of	52%,	for	example).

2.6.3	BASasm_task

The	example	in	Section	2.4	suggests	that	the	listing	from	the	compiler	be	sent	to
the	screen.	If	many	errors	are	reported	while	compiling,	it	might	be	an	advantage
to	direct	the	listing	to	a	disk	file	or	possibly	to	a	printer,	so	that	you	have	a
permanent	copy	to	remind	you	which	errors	occurred	where	in	the	programs.

You	may	also	get	error	messages	when	you	run	the	completed	game	if	you	have
made	any	errors	with	any	program	modifications.	In	this	case	the	reported	error
will	state	which	line	of	the	program	the	problem	occurred	in,	provided	you	select
the	option	to	include	SOURCE	line	numbers	when	you	use	BASasm	to	compile
your	programs.	If	this	option	is	not	selected,	your	compiled	programs	will	be
much	shorter	but	any	errors	will	be	reported	as	occurring	in	line	number	0.	You
should	only	exclude	SOURCE	line	numbers	in	the	compiled	programs	after	they
are	fully	debugged	and	tested.

2.6.4	VOCedt_task

VOCedt_task	includes	a	facility	for	word	searching,	and	we	suggest	that	you	use
this	feature	before	adding	a	new	word	to	the	vocabulary,	in	case	the	word	already
exists	in	the	vocabulary	file.	If	the	new	word	isn't	found,	the	next	free	word	slot
is	selected	ready	for	you	to	make	the	addition.

Words	are	terminated	by	a	number.	This	can	be	from	0	to	9,	and	particular	values
are	used	for	different	types	of	word.	Table	5	provides	a	list	of	what	each	number
is	used	for.

2.7	Special	Features	to	Watch	Out	For

Sooner	or	later	in	any	adventure	game,	you	will	want	to	build	in	special	features
that	will	be	different	for	each	game	you	write.

The	Mini_Adventure	includes	some	features	of	this	kind	and,	when	you	adapt	it
to	form	your	own	game,	you	will	either	have	to	develop	it	with	them	in	mind	or
remove	them.	These	features	are	all	coded	in	the	system	programs,	and	notes	are
included	below	to	show	you	how	to	remove	them.	If	you	prefer	to	keep	any,	then
be	sure	that	your	game	fits	each	feature	you	keep.

If	you	do	remove	any	feature,	the	messages	associated	with	it	may	not	be
needed.	In	this	case	you	can	either	reduce	the	message	to	zero	length	to	save
space	or	change	it	for	use	by	other	features	you	may	wish	to	add.	You	can
examine	the	message	files	by	using	the	MSGedt	utility,	or	you	can	simply	print
the	contents	of	each	message	file	to	a	printer,	if	you	prefer	a	hard	copy.

2.7.1	Object	0,	the	Lamp

The	lamp	is	very	special	in	two	ways:	firstly,	it	must	not	be	an	object	which	can
contain	another	object.	Referring	to	Table	2,	this	condition	requires	that	object
0's	parameter	14	must	be	zero.

This	condition	is	imposed	by	the	way	that	object	containment	works.	A
contained	object	has	parameter	11	set	to	a	value	which	indicates	which	object
contains	it.	If	object	3	(the	lighter)	has	parameter	11	set	to	1	(the	tool	box),	this
indicates	that	the	lighter	is	inside	the	tool	box.

If	an	object	is	not	contained,	it	must	have	parameter	11	set	to	zero.	Since	object
zero	is	the	torch,	it	follows	that	nothing	can	ever	be	contained	in	it.	This
restriction	cannot	be	removed	unless	you	re-write	several	sections	of	the	'player'
program.

The	second	special	feature	of	the	lamp	is	that	it	can	be	a	light	source	without
being	on	fire	(it	is	an	electric	lamp,	after	all).	Normally	object	parameter	15	bit	2
is	used	to	indicate	that	an	object	is	alight.	If	it	is	on	fire,	it	will	also	give	off	light.
The	lamp	is	not	flammable,	however	(this	being	controlled	by	parameter	15	bit

7),	and	the	'burning'	bit	is	used	to	control	whether	it	is	switched	on	or	off.

The	switching	of	the	lamp	is	controlled	by	the	routine	'check_switch_torch',
which	you	will	find	in	the	player	program	(lines	6370	to	6700).	If	you	remove
this	routine	(you	must	also	remove	the	call	to	it	by	deleting	line	420),	the	lamp
will	no	longer	respond	to	commands	to	switch	it	on	or	off.

If	you	do	delete	the	above	special	feature	of	the	lamp,	you	can	also	make	object
0	flammable.	To	do	this,	set	parameter	15	bit	7,	which	will	flag	the	object	as	one
that	can	burn.

In	addition	you	must	make	another	small	change	to	the	player	program.
Attempts	to	pick	up	burning	objects	are	not	allowed,	this	restriction	being
applied	by	lines	4420	and	4430	of	the	player	program.	The	previous	line	(4410)
is	a	test	that	stops	object	0	from	being	affected	by	this	restriction.	If	this	test
were	not	included,	you	would	not	be	allowed	to	pick	up	the	lamp	if	it	was
switched	on!	So	if	you	delete	line	4410,	object	0	will	have	to	pass	the	test	in	the
same	way	as	the	other	objects	in	the	game.

There	is	also	a	single	change	that	must	be	made	to	the	event	program	as	well.
This	is	in	line	1320,	where	the	command	'if_eq	4'	should	be	changed	to	'if_lt	4'.
This	line	is	in	the	routine	'check_burning_objects',	which	controls	how	long
objects	will	burn	before	they	are	consumed.	This	test	currently	stops	checking
with	object	1,	and	the	change	will	extend	this	to	include	object	0.

2.7.2	Object	3,	the	Lighter

There	are	two	special	features	in	object	3.	It	is	the	only	object	that	can	burn	and
also	be	picked	up	while	it	is	burning.	Secondly,	once	it	has	finished	burning,	it
simply	goes	out	rather	than	being	consumed	and	removed	from	the	game.

You	can	change	either	of	these	special	features	as	follows:

To	prevent	the	lighter	from	being	picked	up	if	it	is	burning,	delete	line	4420	from
the	player	program.	This	will	still	allow	you	to	light	it	(by	the	use	of	the	'PRESS
LIGHTER'	command)	without	coming	to	any	harm.	To	completely	remove	the
special	feature,	you	would	have	to	remove	lines	6860	to	6910	in	the	routine
'check_press'	in	the	player	program.	If	this	is	done,	the	lighter	will	no	longer

function	as	a	primary	source	of	fire	and	you	would	have	to	provide	an	alternative
way	of	starting	something	burning.

To	make	the	lighter	behave	in	the	same	way	as	other	objects	when	it	burns,	that
is	to	completely	burn	away	after	a	short	while,	you	need	to	make	two	changes	to
the	event	program:

The	first	is	to	delete	the	routine	'check_lighter'	(lines	1110	to	1210)	and	the	call
to	that	routine	(line	200).	Secondly,	delete	line	1330,	which	is	there	to	prevent
the	routine	'check_burning_objects'	from	servicing	the	lighter.

This	change	might	usefully	be	implemented	if	you	wanted	to	change	the	lighter
to	a	match	for	example,	which	could	be	struck	once	but	would	be	consumed
after	it	burns.	An	example	in	Section	4	converts	the	lighter	to	a	box	of	matches.

2.7.3	Special	Effects	at	Locations:	Draughts	and	the	Gas	Leak

Locations	3	and	4	both	have	the	special	property	of	blowing	out	the	lighter	if	it
happens	to	be	alight.	Location	7	is	sensitive	to	any	object	that	is	alight	(except
the	lamp)	and	will	cause	the	player's	death	in	an	explosion.

The	action	at	location	7	is	controlled	by	the	routine	'check_for_bangs'	in	the
player	program	(lines	9150	to	9320).	To	remove	this	feature,	delete	these	lines
and	also	the	calls	to	'check_for_bangs'	made	in	lines	1400	and	1450.

The	blowing	out	of	the	lighter	is	controlled	by	lines	1330	to	1380	of	the	player
program.	Deleting	these	lines	will	prevent	this	from	happening.

2.7.4	Other	Special	Effects

It	is	often	difficult	to	find	a	clear	distinction	between	'special	effects'	and
'general'	effects.	The	examples	above	are	most	definitely	special,	while	features
like	an	object's	classification	as	'solid'	or	'liquid'	are	general.

There	are	a	great	many	features	in	the	Mini_Adventure	that	fall	in	neither
classification.	The	examples	in	Section	4	show	how	many	of	the	features	work
and	how	to	add	new	or	modified	features	to	the	system.

This,	along	with	the	description	of	each	routine	in	the	program	source	files,
should	enable	you	to	find	how	any	of	the	features	work	and	modify	or	expand
them	to	your	own	specifications.

3.0	A	DETAILED	DESCRIPTION	OF	THE	ACT	SYSTEM

This	section	provides	details	of	both	the	ACT	system	and	the	structure	of	the
'framework'	provided	by	the	two	supplied	programs	PLAYER_prog	and
EVENT_prog.

3.1	The	ACT	System	Language

ACT	shares	similarities	with	assembler-level	languages.	From	Section	1	and
Section	2	you	may	have	noticed	that	most	of	the	characteristics	of	a	game	and
the	objects	in	it	are	dictated	by	the	various	parameters	for	each	location	and
object	as	well	as	the	various	text	messages.

The	two	programs	control	a	game	from	within	the	framework	defined	by	these
data	sources	and	interact	with	the	data	by	way	of	a	number	of	variables	and	a
variety	of	system	commands.

The	system	variables	are	similar	to	conventional	variables	used	in	most	high-
level	languages,	such	as	SuperBASIC.	They	are	16	bits	in	length	and	work	with
signed	arithmetic,	which	enables	them	to	represent	numbers	in	the	range	-32768
to	+32767.

There	can	be	up	to	256	system	variables;	the	actual	number	being	controlled	by	a
setting	in	the	LAST_dta	data	file.	They	are	referred	to	in	an	ACT	program
simply	by	the	use	of	a	number.	For	example,	one	common	command	used	is	one
that	causes	a	message	to	be	printed:

				100	PRINT_GEN	4

The	actual	message	printed	will	depend	on	the	value	in	variable	4.	To	print	out	a
specific	message:

				100	LOAD_VAR	4,25	:	PRINT_GEN	4

In	this	case,	the	first	command	'load	variable'	will	put	the	value	25	into	the
variable	number	4.	Use	of	the	colon	to	separate	several	commands	on	the	same
line	is	supported	in	the	same	way	as	in	SuperBASIC.	The	remainder	of	the	line
will	now	result	in	general	message	number	25	being	printed.	The	program	is
built	up	in	much	the	same	way	as	a	SuperBASIC	program.	Each	line	of	program
has	a	number,	and	lines	are	executed	in	turn,	unless	something	occurs	to	change
the	flow.

There	are	some	commands	in	ACT	that	have	the	same	meaning	as	in
SuperBASIC.	The	two	most	common	are	the	'REMark'	statement	and	the	'GO

TO'	command.	ACT	also	supports	the	use	of	named	subroutines.	The	command
to	set	up	a	subroutine	is	not	the	same	as	in	SuperBASIC;	instead	the	keyword
NAME	is	used,	followed	by	the	name	of	the	subroutine.

The	program	line:

100	NAME	print_hello	:	LOAD_VAR	0,7	:	PRINT_GEN	0	:	RETurn

defines	a	single-line	subroutine	called	'print_hello',	which	will	cause	general
message	7	to	be	printed	whenever	it	is	called.	The	RETurn	statement	performs
the	same	function	as	in	SuperBASIC.	There	is	one	addition	to	the	use	of
subroutines	in	ACT.

ACT	has	two	programs,	the	player	program	and	the	event	program.	These	share
the	same	variables	and	can	also	share	the	same	subroutines.	In	the	previous
example,	a	call	made	to	'print_hello'	will	correctly	execute	that	routine,	no	matter
which	program	it	is	defined	in	or	from	which	program	the	call	is	made.

At	the	end	of	the	subroutine,	'RETurn'	will	cause	the	program	flow	to	go	back	to
the	correct	place	in	whichever	program	made	the	call.	ACT	does	not	support
conditional	structures	of	the	form	IF	THEN	ELSE.	This	means	that	the	use	of
the	GO	TO	instruction	is	inevitable.	GO	TO	has	one	restriction	on	the	way	it	is
used.	This	is	that	you	may	not	have	a	branch	to	a	line	number	that	only	has	a
REMark	statement.

This	is	because	the	assembler	BASasm	optimizes	for	space,	and	if	it	encounters
a	line	with	no	executable	instruction	on	it,	that	line	is	not	included	at	all.	If	you
happpen	to	include	a	GO	TO	that	points	to	such	a	line,	BASasm	will	report	an
error	when	you	try	to	compile	it.	The	use	of	a	REMark	at	the	end	of	any	line
with	another	command	imposes	no	restrictions.

Conditional	tests	are	made	by	using	one	of	four	commands,	as	in:

				100	LOAD_VAR	2,0	:	IF_EQ	2	:	LOAD_VAR	2,1	:	PRINT_GEN	2

				110	LOAD_VAR	2,1	:	IF_EQ	2	:	LOAD_VAR	2,1	:	PRINT_GEN	2

				120	...

In	line	100,	the	second	command	is	IF_EQ	2.	This	command	says	'test	the	value
in	variable	2	and,	if	it	is	zero,	execute	the	rest	of	the	line'.	In	this	case,	variable	2
will	be	zero	and	general	message	1	will	be	printed.	Line	110	is	the	same,	except

that	variable	2	will	not	be	zero.	The	test	will	fail	and	the	remainder	of	the	line	is
aborted	so	that,	after	the	test	instruction,	the	next	command	will	be	taken	from
line	120.

Other	commands	similar	in	meaning	to	SuperBASIC	are	the	CALL	command,
which	ACT	uses	to	execute	machine-code	additions	to	the	system,	and	the	STOP
command,	which	stops	the	program	and	sends	control	back	to	the	ACT	pre-
parser.

A	complete	list	of	the	KEYWORDS	available	to	ACT	is	given	in	the	following
section.

3.2	The	ACT	System	Commands

A	number	of	conventions	are	used	in	this	manual:

		Vn		refers	to	an	ACT	system	variable.

		#n		refers	to	a	number	in	the	range	-32768	to	+32767

NOTE:	When	coding	a	command,	only	the	relevant	number	should	be	included.

The	command	LOAD_VAR	is	described	below	as	LOAD_VAR	Vn,#m;	in	the
program	you	would	code	this	with	the	desired	variable	number	and	constant
directly,	LOAD_VAR	3,1000,	for	example.

The	valid	range	of	variables	is	0	to	255,	but	the	top	limit	is	likely	to	be	less	than
this,	since	not	all	of	the	possible	variables	need	be	allocated	(the	actual	number
is	set	by	LSTedt_task).

3.2.1	Commands	with	no	Parameters

REMark Everything	following	on	the	same	line	is	treated	as	comment.
RETurn Return	to	the	calling	routine	after	a	call	has	been	made	to	a	procedure.
STOP The	current	program	is	stopped,	and	control	goes	back	to	the	ACT	pre-

parser.
The	STOP	can	be	within	a	procedure;	there	is	no	need	to	return	to	the
calling	routine.

QUIT Stops	the	game	completely.

3.2.2	Commands	with	1	parameter

GO	TO	#n Go	to	line	number	#n.	Note	this	line	must	not	be	one	that
ONLY	contains	a	REMark	statement.

IF_EQ	Vn Test	the	value	in	variable	Vn.	The	remainder	of	the	line	is
executed	if	the	value	is	zero,	othewise	execution	continues
from	the	following	line.	The	value	in	Vn	is	unaltered.

IF_GE	Vn Test	the	value	in	variable	Vn.	The	remainder	of	the	line	is
executed	if	the	value	is	greater	than	or	equal	to	zero,
otherwise	execution	continues	from	the	following	line.	The

value	in	Vn	is	unaltered.
IF_LT	Vn Test	the	value	in	variable	Vn.	The	remainder	of	the	line	is

executed	if	the	value	is	less	than	zero,	otherwise	execution
continues	from	the	following	line.	The	value	in	Vn	is	not
altered.

IF_NE	Vn Test	the	value	in	variable	Vn.	The	remainder	of	the	line	is
executed	if	the	value	is	NOT	zero,	otherwise	execution
continues	from	the	following	line.	The	value	in	Vn	is
unaltered.

NAME
'name_string'

This	command	defines	the	starting	point	of	an	ACT
procedure.	The	name_string	can	be	any	group	of	symbols
terminated	by	the	first	space	or	colon.	The	maximum
length	allowed	is	30	characters.	The	NAME	command
must	be	the	first	on	a	line.	Procedures	can	be	re-entrant
entry	points	into	a	common	section	of	code.	The	maximum
nesting	level	supported	is	14.

NUMB_LOC	Vn The	number	of	locations	defined	in	the	game	is	loaded	into
Vn.

NUMB_OBJ	Vn The	number	of	objects	defined	in	the	game	is	loaded	into
Vn.

NUMB_WORDS	V The	number	of	words	entered	in	the	last	player	command
is	loaded	into	Vn.

PRINT_GEN	Vn Print	the	general	message	indicated	by	variable	Vn.	The
message	will	be	terminated	by	a	newline	character	and
appear	on	the	screen	immediately.

PRINT_LOC	Vn Print	the	location	message	indicated	by	variable	Vn.	The
message	will	be	terminated	by	a	newline	character	and
appear	on	the	screen	immediately.

PRINT_OBJ	Vn Print	the	object	message	indicated	by	variable	Vn.	The
message	will	be	terminated	by	a	newline	character	and
appear	on	the	screen	immediately.

PRINTS_GEN	Vn Print	the	general	message	indicated	by	variable	Vn.	This
command	differs	from	the	other	form	in	that	no	newline	is
added	to	the	end	of	the	message.	If	the	message	is	less	than
a	line	of	characters	(the	size	of	which	will	depend	on
which	mode	the	QL	is	running	in	-	4	OR	8),	no	output	will
appear	until	another	message	is	added	to	the	end	of	it.	The

use	of	the	normal	PRINT	and	the	PRINTS	forms	of	output
allows	text	to	be	built	up	on	the	screen	from	a	variety	of
separate	parts.

PRINTS_LOC	Vn Print	the	location	message	indicated	by	Vn.	This	is	the
alternative	form	of	output	and	operates	in	the	same	way	as
PRINTS_GEN.

PRINTS_OBJ	Vn Print	the	object	message	indicated	by	Vn.	This	is	the
alternative	form	of	output	and	operates	in	the	same	way	as
PRINTS_GEN.

PRINT_VAR	Vn This	will	print	the	number	contained	in	Vn.	It	operates	in
the	alternative	form	as	described	for	PRINTS_GEN.

PR_UKN_WRD	Vn This	is	the	command	to	print	any	words	that	the	pre-	parser
does	not	know.	Any	unrecognised	words	are	placed	in	a
special	store	by	the	pre-parser,	and	this	routine	can	be	used
to	print	them	out.	The	word	to	be	printed	must	be
contained	in	Vn,	where	a	value	of	1	stands	for	the	first
unknown	word	etc.

RANDOM	Vn A	random	number	(range	-32768	to	+32767)	is	loaded	into
Vn.

RESTORE	Vn Restore	the	game	from	a	previous	SAVE	command.	Vn
will	be	set	to	zero	if	the	operation	is	a	success	or	to	1	if
there	is	a	problem.	The	file	name	used	is	defined	by	the	file
LAST_dta	and	may	be	modified	by	the	LSTedt_task	utility.

SAVE_GAME	Vn Save	the	current	game	position.	Vn	will	be	set	to	zero	if	the
operation	is	a	success	or	to	1	if	there	is	a	problem.	The	file
name	used	is	defined	by	the	file	LAST_dta	and	may	be
modified	by	the	LSTedt_task	utility.

3.2.3	Commands	with	2	Parameters

ADD	Vn,#m The	value	#m	is	added	to	the	contents	of	Vn.
CALL	Vn,Vp Call	the	external	routine	indicated	by	the	contents	of	Vn.

External	routines	start	with	number	1.	The	value	in	Vp	is
loaded	into	the	lower	16	bits	of	D0,	and	this	value	is
passed	to	the	routine.	Vp	is	loaded	from	D0	on	return	from
the	routine.

DIVIDE	Vn,#m The	value	in	Vn	is	divided	by	#m.

LOAD_VAR
Vn,#m

The	value	#m	is	loaded	into	the	variable	Vn.

MOVE	Vn,Vm The	contents	of	Vn	are	copied	to	Vm.
MULTIPLY	Vn,#m The	value	in	Vn	is	multiplied	by	#m.
SUBTRACT	Vn,#m The	value	#m	is	subtracted	from	those	of	Vn.
VAR_ADD	Va,Vb The	contents	of	Va	are	added	to	those	of	Vb.
VAR_DIV	Va,Vb The	contents	of	Vb	are	divided	by	those	of	Va.
VAR_MUL	Va,Vb The	contents	of	Vb	are	multiplied	by	those	of	Va.
VAR_SUB	Va,Vb The	contents	of	Va	are	subtracted	from	those	of	Vb.

3.2.4	Commands	with	3	Parameters

BITCLR_LOC	Vn,Vp,Vb This	command	is	used	to	set	the	value	of	a	single	bit
in	one	of	the	location	parameters.	Vn	indicates	the
location	number,	Vp	the	parameter	number	and	Vb
the	bit	number.	Locations	and	parameters	are
numbered	from	0	upwards,	while	the	bit	number
must	be	from	0	to	7.	None	of	the	variables	are
altered.

BITCLR_OBJ	Vn,Vp,Vb This	command	is	identical	to	BITCLR_LOC,	except
that	it	operates	on	the	object	data.

BITSET_LOC	Vn,Vp,Vb A	similar	function	to	BITCLR_LOC,	except	that	the
indicated	bit	is	set.

BITSET_OBJ	Vn,Vp,Vb This	command	is	identical	to	BITSET_LOC,	except
that	it	operates	on	the	object	data.

BITTST_LOC	Vn,Vp,Vb This	command	is	similar	to	the	BITCLR	or	BITSET
commands	above,	except	that	it	does	not	change	the
value	of	the	selected	bit,	instead	it	reads	the	value
(either	0	or	1)	and	sets	Vb	accordingly.

BITTST_OBJ	Vn,Vp,Vb This	command	is	identical	to	BITTST_LOC,	except
that	it	checks	the	bit	in	the	selected	object	data.

COMPARE	Va,Vb,Vr This	command	is	used	to	compare	the	contents	of
two	variables	and	set	the	contents	of	a	third	variable
accordingly.	If	Va=Vb,	then	Vr	will	be	set	to	zero;	if
Va<Vb,	then	Vr	will	be	set	to	-1;	and	if	Va>Vb,	Vr
will	be	set	to	+1.	The	values	in	Va	and	Vb	are	not

altered.
GET_WORD	Vn,Vd,Vt The	Vnth	word	number	entered	in	the	player's	last

command	is	put	into	Vd.	The	word	type	number	(0
to	9)	is	put	into	Vt.	Vd	will	be	negative	if	the
requested	word	is	not	found.	In	this	case	Vt	will
indicate	the	reason	with	a	value	of	0	if	the	requested
word	is	beyond	the	number	actually	entered,	-1	if	the
word	is	unknown,	-2	if	too	many	words	are	entered,
and	-3	if	the	word	is	too	abbreviated	to	be	resolved.

READ_LOC	Vn,Vp,Vv The	value	of	location	number	Vn	parameter	Vp	is
entered	into	Vv.	The	result	will	be	a	number	in	the
range	0	to	255.	Vn	and	Vp	are	unaltered.

READ_OBJ	Vn,Vp,Vv A	similar	command	to	READ_LOC,	except	that	it
operates	on	the	object	data.

UPDATE_LOC	Vn,Vp,Vv This	routine	updates	the	location	data	in	location	Vn,
parameter	Vp,	with	the	value	in	Vv.	The	contents	of
Vv	must	be	in	the	range	0	to	255.

UPDATE_OBJ	Vn,Vp,Vv A	similar	command	to	UPDATE_LOC,	except	that	it
operates	on	the	object	data.

3.3	The	Data	Structure	of	the	Mini_Adventure

The	following	notes	describe	the	Location	and	Object	data	structures
(LOCN_dta	and	OBJT_dta	files)	and	also	the	meaning	of	each	of	the	Location
and	Object	messages.

3.3.1	Location	Messages

There	are	two	types	of	description	used	in	ACT	games:	short	and	long.	The	short
description	is	used	for	brief	player	prompts,	while	the	long	description	is	used
for	detailed	descriptions	of	surroundings,	Objects	and	other	points	related	to	a
story.	For	Location	N,	the	short	description	is	message	number	N*2,	while	the
long	description	is	message	N*2+1.

For	example,	the	Mini_Adventure's	Location	7	uses	the	short	description	in
Location	message	number	14	and	long	description	number	15.	Note	that
Location	number	0	is	not	used	as	a	Location,	and	so	Location	messages
numbered	0	and	1	are	free	for	other	use.

3.3.2	Object	Messages

There	are	four	types	of	object	message:	the	short	and	long	descriptions	(the	text
printed	when	the	player	issues	a	'LOOK'	command,	for	example),	the
'EXAMINE'	text	and	the	'READ'	text.

An	examination	of	the	OBJT_msg	file	with	the	MSGedt_task	utility	details	the
expected	formats	in	each	case.	The	sequence	of	the	messages	is	'short'	followed
by	'long'	descriptions,	then	'EXAMINE',	and	lastly	'READ'	text.	The	message
numbers	for	Object	N	are	therefore,	N*4,	N*4+1,	N*4+2	and	N*4+3
respectively.

A	typical	example	from	the	Mini_Adventure	for	the	box,	Object	number	1:

4. SHORT	: box
5. LONG	: metal	tool	box	with	rusty	lid
6. EXAMINE	: The	toolbox	has	a	hinged	lid	with	provision	for	a

padlock,	although	there	isn't	one	on	it	at	the	moment.

7. READ	: There	is	no	writing	on	the	box.

3.3.3	Location	Data

The	data	in	Location	0	is	different	from	the	normal	Location	data	and	is
described	separately.	There	are	11	parameters	for	each	Location	in	the
Mini_Adventure;	parameters	0	to	9	define	the	logical	'map'	of	the	game,	while
parameter	10	is	used	to	contain	extra	information	about	each	Location.

The	'map'	parameters	are	numbers	that	define	which	directions	at	a	given
Location	lead	somewhere	else:

Each	parameter	corresponds	to	specific	directions,	arranged	clockwise,	starting
with	parameter	number	0,	the	value	for	North,	in	45-degree	steps,	to	Northeast
(parameter	1),	to	East	(parameter	2)	and	so	on,	as	detailed	in	Section	2.1.2.	After
Northwest	(parameter	7),	parameters	8	and	9	are	used	for	the	vertical	directions,
Up	and	Down.

If	a	parameter	value	is	greater	than	'0',	this	indicates	which	Location	the
corresponding	path	will	lead	to.

If	a	parameter	value	is	'0',	the	corresponding	direction	has	no	path.	Parameter	10
is	reserved	for	flags.	Only	two	are	used	with	the	Mini_Adventure,	and	parameter
10	has	6	remaining	flags	which	may	be	used	for	additional	features.	It	is	simple
to	add	extra	parameters	if	more	are	required	-	an	option	to	do	so	is	given	by	the
LOCedt	utility.

The	flags	currently	defined	for	the	Mini_Adventure	(bits	0	and	1)	contain	the
following	information:	bit	0	is	set	by	the	'Player'	program	once	a	Location	has
been	described	for	the	first	time.	This	is	the	mechanism	by	which	the	long
description	is	given	on	first	visits	and	the	short	one	thereafter.	Bit	1	indicates	that
the	Location	is	naturally	lighted	if	it	is	set	to	'1'.	In	the	Mini_Adventure	Location
1	(the	starting	point)	has	this	bit	set,	while	the	other	Locations	do	not.

3.3.4	Object	Data

Objects	have	19	parameters	in	the	Mini_Adventure	(0	to	18).	The	meaning	of
each	is	indicated	in	Table	2.	Table	3	lists	the	meanings	of	the	parameters	in

Location	0,	which	is	used	to	contain	various	items	of	information	about	the
game.	Again	it	is	a	simple	matter	to	add	extra	parameters	by	using	the	LOCedt
utility.

3.4	How	the	System	Programs	Work

The	broad	principles	of	how	each	program	works	are	described	in	this	section.
Detailed	descriptions	of	how	to	make	various	modifications	and	additions	to	the
programs	are	provided	in	Section	4,	along	with	examples	and	comments	for	each
of	the	program	source	files.

3.4.1	The	Player	Program

You	can	examine	either	program	with	a	text	editor	or	by	LOADing	it	as	a
SuperBASIC	program	and	then	LISTing	it	in	the	normal	way.	The	main	part	of
the	'Player'	program	is	contained	in	lines	100	to	990.

The	program	consists	of	a	series	of	subroutine	calls.	Line	360,	for	example,
consists	of	the	subroutine	call	'save_the_game'.	Each	call	to	a	subroutine	is
followed	by	a	description	of	what	it	does,	and	the	subroutine	name,	consistent
with	good	programming	practice	in	any	language,	is	usually	a	description	of	its
function.

'Save_the_game'	will	examine	the	first	word	of	the	command	line	entered	by	the
player.	If	this	is	word	number	31	(SAVE),	the	routine	will	perform	a	game	save
and	return	control	to	the	ACT	pre-parser,	so	that	the	next	command	may	be
accepted	from	the	player.

If	the	word	is	not	number	31	(SAVE),	the	routine	returns	control	to	the	program
and	the	next	subroutine	will	be	called,	which	is	'restore_the_game'	(called	from
line	380).

The	subroutines	themselves	are	defined	later	in	the	program.	Each	has	a	detailed
description	of	its	operation	at	the	beginning,	but	generally	comments	have	been
kept	to	a	minimum	within	each	routine.	It	is	not	likely	that	you	will	need	to
make	many	changes	to	the	routines	provided,	since	additions	will	generally	be
made	by	adding	new	routines.	Some	of	the	examples	in	Section	4	do	modify
some	of	the	routines,	however,	and	in	these	cases	the	way	that	the	appropriate
routine	works	is	described	in	detail.

3.4.2	The	Event	Program

This	works	in	a	similar	way	to	the	'Player'	program,	but	its	function	is	quite
different.	Most	of	the	routines	called	will	return	control	to	the	'Event'	program
once	they	have	executed,	rather	than	back	to	the	ACT	pre-parser.

This	means	that	all	the	routines	are	executed	in	turn,	rather	than	just	the	one
which	successfully	decodes	the	last	command	as	in	the	'Player'	program.	The
'Event'	program	will	normally	return	to	the	pre-parser	(at	line	300)	after	all	the
subroutines	have	been	called.

Each	routine	is	described	at	its	beginning	in	the	same	way	as	in	the	'Player'
program.

3.4.3	Considerations	for	Split-MODE	Screens

The	two	program-merge	files	supplied	with	the	Video	Interface	Kit	contain	the
required	code	to	support	the	Split-Mode	feature.	In	addition,	a	switch	is	included
to	enable	the	feature	to	be	switched	ON	or	OFF	when	the	game	is	first	run.

The	control	of	this	is	achieved	through	the	spare	Location	0	parameter	number	2
bit	flags	2	to	4.	Bit	2	will	directly	control	the	operation	of	all	of	the	CALLS
(described	in	Section	7.3	and	Section	7.4)	to	the	Split	routine:	the	flag	must	be
set	to	enable	the	CALLs.	Bits	3	and	4	are	used	by	the	new	routine
check_for_mode	in	the	player	program,	telling	it	when	to	operate.	A	few
additional	lines	in	the	EVENT	program	are	also	involved.

You	can	use	the	program	startup	feature	as	it	stands	or	permanently	enable	or
disable	the	split	feature	by:	a)	editing	the	LOCN_dta	file	(with	the	LOCedt
utility)	to	set	Location	#0	parameter	#2	bit	#2	as	required;	and	b)	removing	the
following	lines	from	the	two	merge	files	before	using	them	to	create	their	new
PROG_dta	file.

				Player_Prog_Additions:	Delete	155,	156	and	30620	to	30760.

				Event_Prog_Additions	:	Delete	1063	and	1064.

You	should	be	aware	that	the	split	screen	puts	a	great	demand	on	processor	time.
The	use	of	half-screen	pictures	noticeably	reduces	the	command	response	speed
of	the	adventure	program	produced.	This	time	penalty	will	be	increased	for
larger	pictures;	for	this	reason	the	use	of	pictures	larger	than	half-screen	is	not
recommended.

3.4.4	May	We	Reserve	Some	Space?

In	order	to	provide	you	with	maximum	flexibility,	we	have	deliberately	avoided
including	restrictions	in	the	ACT	system.	However,	in	order	to	allow	us	the
facility	to	add	new	features	to	ACT,	we	might	need	to	use	some	of	the	unused
parameters	and	flags.

For	this	reason	we	recommend	that	you	do	not	use	the	remaining	bits	of
Location	0	parameter	#2,	nor	parameters	9	and	10	of	Location	0.	This	will	leave
these	data	areas	free	for	us	to	use	for	future	additions	to	the	system	and	ensure
that	compatability	with	existing	games	and	new	add-on	modules	is	maintained.

Generally	we	recommend	that	you	assign	new	variables/parameters	for	use	with
any	new	features	that	you	incorporate	into	your	games.	This	has	the	additional
advantage	that	it	will	avoid	any	possible	corruption	of	information	required	by
the	existing	programs.

3.5	Interfacing	Machine-Code	Extensions	to	ACT

The	ACT	'CALL'	command	(see	Section	3.2.3)	allows	machine-code	extensions
to	be	called	directly	from	either	of	the	two	ACT	system	programs.	A	call	made
in	this	way	executes	the	user's	machine-code	routine	as	a	subroutine,	and	control
should	be	returned	with	an	RTS	instruction.	On	entry,	the	value	in	the	lower	16
bits	of	D0	will	be	the	number	contained	in	the	second	variable	of	the	CALL
instruction.	For	example,	the	command

				LOAD_VAR	1,1	:	LOAD_VAR	2,55	:	CALL	1,2

will	call	the	first	machine-code	routine	and	pass	the	number	55	in	D0.	The	user's
routine	need	not	preserve	any	registers,	and	the	value	in	D0	will	be	passed	back
to	the	appropriate	variable	on	return.	The	machine-code	routine	can	access
information	about	the	game	by	referring	to	the	main	table	area	maintained	by
ACT.	This	table	is	pointed	to	by	A6;	a	list	of	some	of	the	values	in	it	is	given	in
Table	6.

3.6	The	ACT	On-Line	Game	Debugger	System

To	help	you	sort	out	any	problems	with	developing	the	PLAYER	or	EVENT
programs	for	your	adventure	game,	a	powerful	debugging	system	is	provided
within	the	ACT	base	module.	You	should,	of	course,	not	allow	a	copy	of	your
game	to	be	circulated	with	the	debugger	included;	it	would	provide	players	with
about	the	most	effective	cheating	facility	they	could	possibly	ask	for!	The
alternative	base	module,	ACT_short,	excludes	the	debugger	as	well	as	on-line
messages;	as	explained	in	Section	1.6,	you	should	use	this	module	when	linking
the	final	version	of	your	game(s).

3.6.1	What	Is	the	Debugger?

The	debug	facility	provides	a	means	to	do	all	of	the	following	while	the
development	version	of	your	game	is	actually	running:

1.	 Examine	or	alter	the	parameters	of	any	object	or	location	defined	in	your
game.

2.	 Examine	or	alter	the	value	of	any	of	the	system	variables.

3.	 The	debugger	can	be	explicitly	entered	at	any	time	by	simply	pressing	the
up	cursor	key.

4.	 Break	points	can	be	set	in	either	the	player	or	the	event	program	or	both.
They	will	suspend	program	execution	and	pass	control	to	the	debugger.

5.	 The	debugger	allows	you	to	step	through	either	program,	either	line	by	line
or	instruction	by	instruction.	Parameter	or	variable	values	may	be	examined
and	altered	at	any	time	during	this	process.

6.	 A	complete	symbolic	representation	of	each	instruction	is	provided	along
with	an	indication	of	the	current	source	program	line.	Armed	with	a	listing
of	a	program,	you	can	use	the	debugger	to	'step'	through	problem	sections
and	quickly	isolate	and	identify	any	errors.

3.6.2	How	Does	the	Debugger	Operate?

The	debugger	is	called	initially	by	pressing	the	up	cursor	key	to	complete	any
command	to	the	game.	When	this	is	done,	the	debugger	is	called	before	the
player	program	is	entered	and	your	game	command	interpreted	in	the	normal
way.

The	debugger	maintains	a	pop-up	window	in	the	lower	half	of	the	screen.	As
soon	as	you	exit	from	the	debugger,	the	original	screen	contents	are	replaced	and
the	game	will	continue	as	though	nothing	had	happened.	While	the	debugger	is
active,	however,	the	game	is	completely	suspended,	not	even	the	event	program
being	allowed	to	run.

The	debugger	presents	a	simple	'>'	prompt	and	will	accept	a	variety	of
commands	as	described	below.	You	can	use	the	dubugger	to	examine	the	values
of	any	of	the	parameters	or	variables	used	in	your	game.	Also,	by	altering
values,	you	can	dramatically	alter	the	set-up	of	your	game.	For	example,	since
Location	0	parameter	0	defines	the	current	location	of	the	player,	it	is	a	simple
matter	to	'move	about'	within	your	game	simply	by	changing	this	quantity.	As
you	will	realise,	this	facility	is	useful	in	general	testing	of	a	game,	as	well	as	in
isolating	specific	faults.

3.6.3	The	Debbugger	Commands

Whenever	the	debugger	is	entered,	it	will	indicate	which	program	is	currently
running	and	what	the	current	line	number	is.	It	also	indicates	what	the	next
instruction	on	this	line	is.	You	should	realise	that	whenever	the	debugger	is
called	using	the	up	cursor,	it	is	entered	before	the	first	line	of	the	player	program
is	actually	reached.	In	this	case	it	will	indicate	a	line	number	of	0	and	the	next
instruction	indicated	is	not	then	relevant.

Another	thing	to	remember	is	that	the	debugger	can	only	know	about	the	line
numbers	in	the	player	or	event	source	code	if	these	are	included	by	the	BASasm
compiler.	If	you	attempt	to	use	the	debugger	in	a	game	where	you	have	excluded
these,	then	not	all	of	the	features	are	available	to	you.	In	particular,	neither
breakpoints	nor	the	single-line	execute	mode	will	work,	although	you	will	still
be	able	to	execute	the	player	program	instruction	by	instruction,	if	you	want.	If

you	do	operate	the	debugger	in	this	way,	it	will	always	indicate	a	current	line
number	of	0.

The	following	commands	are	accepted	by	the	debugger.	Please	note	that	either
upper-case	or	lower-case	letters	will	be	accepted,	but	you	cannot	use	the	delete
function	to	correct	a	mistake.	If	you	wish	to	abandon	a	command,	simply	press
ESCAPE	as	many	times	as	necessary	to	get	back	to	the	debugger's	'>'	prompt.

1.	 Right	cursor	key.	This	causes	the	next	instruction	of	whichever	program	is
running	to	be	executed.	Control	is	then	returned	to	the	debugger.	This
command	can	be	used	to	'single-	step'	through	either	program.	You	are	free
to	use	the	other	facilities	available	under	the	debugger	to	examine
parameters	and	variables,	and	so	the	operation	of	selected	parts	of	the
program	code	can	be	followed	in	complete	detail.	

2.	 Down	cursor	key.	This	causes	the	the	program	to	run	until	a	new	program
line	is	reached.	In	effect,	this	allows	the	program	to	be	executed	'line	by
line'.	The	use	of	this	command	requires	that	the	programs	are	compiled	with
SOURCE	line	numbers	included,	this	being	controlled	by	an	option	in	the
BASasm	compiler.	Normally	you	should	only	exclude	line	numbers	when	a
program	is	completely	debugged;	this	then	considerably	reduces	the	size	of
the	code	but	at	the	expense	of	limiting	the	flexibility	of	the	debugger.	If	you
do	use	this	command	when	line	numbers	have	been	excluded,	the	program
will	execute	in	the	normal	way	until	control	is	returned	to	the	ACT	pre-
parser.	

3.	 Escape.	This	terminates	the	debugging	session	and	passes	control	back	to
the	program.	The	game	will	then	continue	in	the	normal	way,	unless	you
have	set	breakpoints.	

4.	 'C'	key.	This	is	short	for	'COMMAND'.	It	causes	the	debugger	to	re-print
the	information	that	describes	which	program	is	running,	the	current	line
number	and	the	next	command.

5.	 'B?'	keys.	Any	command	starting	with	the	'B'	key	is	connected	with	the
program	breakpoints.	There	are	four	options,	each	selected	by	the	next	key
pressed.	In	this	case,	the	command	asks	for	a	list	of	the	current	settings	of

each	breakpoint.

There	are	eight	breakpoints,	numbered	1	to	8.	These	can	refer	to	any	line
number	in	either	the	player	or	the	event	program.	A	breakpoint	is	inactive
when	the	line	number	is	set	to	zero,	or	to	any	line	that	doesn't	actually	occur
in	the	program.	In	response	to	the	B?	command	the	debugger	will	print	a
list	as	follows:
						P00000			E00120

						E00200			P01980

						P00440			E00000

						P00000			P00000

These	refer	to	the	eight	breakpoints,	the	initial	letter	indicating	which
program	the	break	is	set	in.	In	this	example	you	will	see	that	the	settings
are:
								Break	No.1,	set	to	PLAYER	program,	line	0	(not	active)

										"			"		2,		"			"	EVENT					"							"		120

										"			"		3,		"			"	EVENT					"							"		200

										"			"		4,		"			"	PLAYER				"							"		1980

										"			"		5,		"			"	PLAYER				"							"		440

										"			"		6,		"			"	EVENT					"							"		0	(not	active)

										"			"		7,		"			"	PLAYER				"							"		0	("					")

										"			"		8,		"			"	PLAYER				"							"		0	("					")

6.	 'BC'	keys.	This	clears	all	the	breakpoints.	

7.	 'BRn.'.	This	is	used	to	clear	a	selected	breakpoint.	The	character	'n'	should
be	a	digit,	1	to	8,	to	indicate	which	breakpoint	is	to	be	cleared.	The	'.'	is
required	to	complete	the	command,	but	you	will	find	that	other	characters
can	be	used	as	well,	for	example	the	space	key.

8.	 'BSn(P/E)nnnnn.'.	This	is	the	command	used	to	set	a	breakpoint	or	to
change	the	set-up	of	a	breakpoint	that	is	already	set.	The	value	'n'	indicates
which	breakpoint	number	is	to	be	set:	this	should	be	a	digit,	1	to	8.	It	should
be	immediately	followed	by	either	a	'P'	or	an	'E'	to	indicate	which	program
the	break	is	to	be	set	in.	Finally,	the	group	'nnnnn'	is	a	number	that	indicates
the	required	line	number	for	the	breakpoint.	The	final	'.'	is	used	to	complete
the	command.	The	following	examples	show	some	valid	formats	that	are
accepted.
									>BS3E550.							Breakpoint	number	3	set	to	EVENT

																									line	number	550.

									>BS6P01000.					Breakpoint	number	6	set	to	PLAYER

																									line	number	1000.

									>BS1P0.									Breakpoint	number	1	set	to	PLAYER

																									line	number	0;	this	is	exactly	the

																									same	as	issuing	the	'BR1.'	command.

9.	 'Vnnn.'.	Used	to	examine	a	variable.	'nnn'	is	the	required	variable	number,
which	must	be	in	the	range	0	to	255,	although	the	maximum	variable
number	is	likely	to	be	less	than	this	limit,	depending	on	how	many	variables
are	actually	assigned	in	the	ACT	'LAST_dta'	file.	Once	you	complete	the
command	with	the	'.'	character,	the	debugger	will	output	the	appropriate
variable's	current	value	as	follows:
									>V7./+00002/	<<<(cursor	will	be	left	at	the	end	of	this

										---													string	of	characters)

Here	the	parts	typed	by	the	user	are	underlined.	Once	the	current	value	of	a
variable	is	examined	in	this	way,	you	have	several	options.	The	simplest	is
to	press	the	ENTER	key,	which	will	return	the	debugger	to	its	prompt
without	making	any	alteration.	

Alternatively	you	can	automatically	select	another	variable	by	pressing
either	the	left	or	right	cursor	keys.	In	this	example	this	would	result	in
variable	number	6	or	variable	number	8	being	examined,	respectively.	

If	you	want	to	change	the	value	of	a	variable,	simply	type	the	new	number
before	pressing	the	ENTER	or	cursor	keys.	In	this	case	control	will	pass
back	to	the	debugger	prompt	or	another	variable	will	be	selected,	but	the
current	variable	will	be	changed	to	the	new	number	first.	The	following
example	should	make	this	clear:
									>V7./+00002/						//examine	V7,	no	change,	on	to	V8

										---				-

									>V008	/+00000/				//no	change,	on	to	V9

																-

									>V009	/-00001/50		//change	V9	to	50,	on	to	V10

									>V010	/+00017/				//no	change,	back	to	V9

																-

									>V009	/+00050/<ENTER>	//re-examine,	new	value	displayed

									>																				//

									

10.	 '(L/O)nnnPmmm.'.	Used	to	examine	object	or	location	parameters.	This
command	works	in	a	very	similar	way	to	the	'V'	command	described	above
(i).	The	first	character	of	the	command,	either	'L'	or	'O',	selects	either	a
LOCATION	or	an	OBJECT	to	be	examined.	The	group	'nnn'	is	the	required
location/object	number;	it	is	followed	immediately	by	the	letter	'P',	which

marks	the	end	of	the	first	number,	and	then	the	second	number,	'mmm',
which	indicates	which	parameter	is	to	be	examined.	Valid	examples	are:
							>L6P10.	/000,	flags	00000000/		//location	6,	parameter	10

							>L029p001.	/028,	flags	00011100/	//location	29,parameter	1

							>O0P10.	/005,	flags	00000101/		//object	0,	parameter	10

Once	a	selection	has	been	made,	you	have	similar	options	to	those	available
using	the	'V'	command.	Thus	ENTER	will	return	to	the	debugger	prompt
without	making	any	alterations,	left	or	right	cursor	will	examine	the
previous	or	next	parameter	of	the	same	object/location,	and	typing	a	new
number	before	any	of	these	options	will	cause	the	value	of	the	displayed
parameter	to	be	updated.	In	addition,	the	use	of	the	up	or	down	cursor	keys
will	select	the	previous	or	next	object/location,	selecting	the	same
parameter	as	in	the	current,	displayed,	one.	

A	simple	editing	sequence	that	should	make	the	various	options	clear	is
shown	below:
				>L0P0.	/001,	flags	00000001/29\BD							//The	player's	current

					-----																									---						//location	in	the	game.

																																												//This	moves	him	to	loc

																																												//29.

				>L000P001	/001,	flags	00000001/28				//Player's	previous

																																												//location.

																																						---			//This	is	updated	to	28.

				>L001P001	/028,	flags	00011100/0<ENTER>	//This	clears	location	1

																																				--------//parameter	1	effectively

																																												//removing	the	NE	path

																																												//from	loc	1	to	loc	28.

				>O8p10.	/005,	flags	00000101/0							//Obj	8	parameter	10	was

					------																									--						//5,	indicating	that	the

																																												//object	is	at	location	5

																																												//the	object	dump.	This

																																												//updates	it	to	0,	the

																																												//object	is	now	'held'.

				>O008P011	/013,	flags	00001101/0<ENTER>	//Parameter	11	was	13,

																																			--------	//meaning	that	object	8

																																												//is	contained	inside	obj

																																												//13.	This	parameter	is

																																												//updated	to	0,	so	that

																																												//object	8	is	no	longer

																																												//contained.

11.	 'H'.	This	is	the	'help'	request:	it	will	produce	a	short	page	of	text	in	the
debugger	window	that	provides	a	brief	reminder	of	the	formats	of	the
debugger	commands.

3.6.4	An	Example	Editing	Session	Based	on	the	Mini_Adventure

Following	through	this	simple	example	should	help	you	to	understand	how	to
use	the	debugger	and	will	illustrate	some	of	the	possible	'tricks'	it	can	be	made	to
perform	in	order	to	help	in	testing	a	game.

The	example	uses	the	Mini_Adventure	program	supplied	with	your	ACT	kit.
Run	the	'debug'	version	of	the	Mini_Adventure	and	then	follow	the	example
below.	You	will	find	it	helpful	to	have	the	Mini_Adventure	map	to	hand	and	also
a	listing	of	both	the	player	and	event	programs.

3.6.5	The	Debug	Session,	Step	by	Step

Allow	the	game	to	start,	unfreezing	the	screen	as	necessary	in	order	to	get	to	the
first	prompt	that	the	game	prints.	Then	follow	the	instructions	below.	Note	that
the	parts	you	have	to	input	are	underlined;	everything	else	is	produced	by	the
game	or	the	debugger.	Also	note	that	the	ENTER	key	is	represented	in	the
examples	by	<ENTER>	and	the	escape	key	by	<ESCAPE>.	Comments	are
added	after	a	//	symbol.	Note	also	that	in	reality	the	debugger	will	open	a	pop-up
window	while	it	is	active.	Interaction	with	the	debugger	is	indicated	in	the
example	by	indenting	the	appropriate	text.

		

		>PRESS	LIGHTER<ENTER>																						//we	are	at	location	1

		With	a	click,	the	lighter	bursts	into	flame.

		>																																										//this	calls	the	debugger

		-

			Break	in	PLAYER	line	00000																//debugger	entered	prior

			Next	instruction:	LOAD_VAR	157,+00000					//to	entering	PLAYER	prog

																																													//-	LOAD_VAR	157,0	isn't

																																													//part	of	the	player	prog

			>L0P0./001,	flags	00000001/7<ENTER>							//Move	player	to	loc	7.

				-----																					--------

			>O0P10./001,	flags	00000001/0													//This	picks	up	the	torch

				------																					--

			>O000P011	/001,	flags	00000001/0<ENTER>			//This	removes	the	lamp

																																	--------				//from	the	toolbox.

			>O0P15./032,	flags	00100000/36												//This	sets	bit	2	of	par

				------																					---											//15	for	the	torch,	it	is

																																													//now	switched	on.

			>O000P016	/000,	flags	00000000/											//No	change	to	par	16

																																		-

			>O000P015	/036,	flags	00100100/<ENTER>				//Re-looking	at	par	15	to

																																-------						//check	we	have	flags	set

																																													//as	we	want.

			>BS1E1190.																																//Breakpoint	1,	EVENT	line	1190

			>BS2P1310.																																//Breakpoint	2,	PLAYER	line	1310

			>B?																																							//Examine	the	breakpoints

				--

			E01190			P01310																											//Breakpoints	1	and	2	as	set,

			P00000			P00000																											//all	the	others	are	'clear'

			P00000			P00000

			P00000			P00000

			><ESCAPE>																																	//Returns	us	to	the	game.

		>LOOK<ENTER>																															//Let's	see:	where	we	are	now...

		This	is	the	end	of	the	road....												//...location	7,	courtesy	of	the

																																													//debugger.

		>INV<ENTER>																																//What	are	we	carrying?

		You	are	carrying:-

		A	small	electric	torch	(Often-Ready	type)	(switched	on).

		>

			//OK,	this	demonstrates	how	the	debugger	can	manipulate	the	game.

			//Remember	that	we	left	the	lighter	burning,	back	in	the	small

			//cave.	The	breakpoint	that	we	have	set	in	EVENT	line	1190	will

			//interrupt	the	program	when	the	lighter	goes	out;	just	wait	a

			//minute	or	so...

			Break	in	EVENT	line	01190													//...the	breakpoint	passes

			Next	instruction:	New	line	+01190					//control	to	the	debugger.

			>BR1.																																	//Clear	this	breakpoint.

			><ESCAPE>																													//Back	to	the	game.

		>NORTH<ENTER>																										//We	shouldn't	be	able	to	go

																																									//north	from	loc	7;

		------------																											//the	breakpoint	in	PLAYER

																																									//	line	1310	will	intercept

																																									//the	attempt	to	move,	though.

			Break	in	PLAYER	line	01310

			Next	instruction:	New	line	+01310

			>\BD																																			//execute	the	next	instruction

																																										//in	line	1310

				-

			Break	in	PLAYER	line	01310

			Next	instruction:	DIVIDE	001,+00002					//Refer	to	a	listing	of

			>\BD																																				//PLAYER	to	follow	the

				-																																						//progress	of	the

			Break	in	PLAYER	line	01310														//step-by-step	execution.

			Next	instruction:	LOAD_VAR	000,+00000			//

			>\BD																																				//We	want	to	step	through

				-																																						//to	the	end	of	this	line,

			Break	in	PLAYER	line	01310														//we	will	then	be	able	to

			Next	instruction:	READ_LOC	000,000,000		//change	the	value	that	the

			>\BD																																				//program	reads	from	the

				-																																						//location	data	and	fool

			Break	in	PLAYER	line	01310														//the	game	into	thinking

			Next	instruction:	READ_LOC	000,001,002		//that	the	NORTH	route	from

			>\BD																																				//location	7	really	leads

				-																																						//to	location	1.

			Break	in	PLAYER	line	01310														//

			Next	instruction:	End	line														//

			>V2./+00000/1<ENTER>																				//Variable	2	contains	the

				---									--------

			><ESCAPE>																															//path	destination;	we

				--------																															//change	this	from	0,

																																											//indicating	no	valid	path,	

																																											//to	1,	indicating	a	route

																																											//back	to	the	small	cave.

		This	is	a	small	cave.

		Here,	I	can	see:-

		A	sheet...

			.

			.

		>

This	example	illustrates	something	of	what	the	debugger	will	allow	you	to	do.
Once	you	have	mastered	the	simple	principles	that	it	works	by,	you	can	use	it	to
help	sort	out	any	problem	you	might	encounter	with	your	additions	to	either	the
player	or	the	event	program.

4.0	ADDING	NEW	FEATURES	TO	THE	SYSTEM

The	file	EXAMPLES_prog,	included	on	the	ACT	master	medium,	contains	the
ACTBASIC	source	code	for	the	example	modifications	described	in	this	section.

You	can	MERGE	this	file	with	either	of	the	two	ACT	system	programs	and
delete	any	sections	you	do	not	want	to	use.	Note	that	only	subroutines	are
contained	in	the	file;	you	must	add	the	appropriate	calls	in	the	main	body	of	the
system	program(s).	You	should	also	be	aware	that	most	routines	will	require
some	small	changes	(substituting	particular	numbers	where	necessary).

4.1	Adding	a	New	Word	Function	to	the	System

The	following	example	checks	the	first	word	of	the	command	line	and,	if	it	is	a
certain	value,	causes	a	message	to	be	printed.	The	name	'check_for_word'	is
used	here,	but	you	can	change	this	as	appropriate	for	the	word	you	actually
check	for.

11000	name	check_for_word

This	line	defines	the	starting	point	of	the	routine	'check_for_word'.

11010	load_var	0,1	:	get_word	0,0,1	:	subtract	0,#n	:	if_ne	0	:	RETurn

This	line	gets	the	first	word	number	into	variable	0	and	the	word	type	into
variable	1.	The	type	information	is	not	actually	needed,	since	the	routine	only
has	to	check	whether	the	word	is	a	particular	number.	'Subtract	0,#n'	will
subtract	the	number	#n	from	the	word	number	contained	in	variable	0.	Note	that
#n	refers	to	whatever	word	you	want	to	check	for;	you	must	substitute	the
appropriate	number.	The	'if_ne	0'	command	will	check	the	value	in	variable	0
and	only	allow	the	remainder	of	line	11010	to	be	executed	if	the	value	is	not
zero.	The	routine	will	return	to	the	calling	program	for	all	words	except	number
#n	.	If	the	word	is	number	#n,	as	is	the	case	here,	the	test	will	cause	the	rest	of
the	line	to	be	skipped	and	the	next	line	to	be	executed.

11020	load_var	0,#m	:	print_gen	0	:	stop

This	line	prints	general	message	#m	and	returns	to	the	ACT	pre-parser,	ready	for
the	next	player	command.	You	must	substitute	the	message	number	you	want
printed	for	#m.

The	routine	works	in	exactly	the	same	way	as	'check_look'	in	the	player	program
(lines	1720	to	1800),	except	that,	instead	of	outputting	a	singlOP

In	this	case	the	three	words	#n1,	#n2	and	#n3	will	each	be	tested	for	and	any	of
them	will	cause	message	#m	to	be	printed.	Extra	tests	can	be	added	between	line
11100	and	11110,	to	allow	more	words	to	be	checked.	To	perform	something
more	interesting	than	simply	printing	a	message	in	response	to	a	word,	the
following	example	shows	how	the	routine	'find_objects',	included	in	the	player

program	(lines	3480	to	4200),	is	used	to	find	what	objects	the	player	is	referring
to	in	a	command	line.

11130	name	check_requiring_an_object
11140	load_var	0,1	:	get_word	0,0,1	:	subtract	0,#n	:	if_ne	0	:	RETurn
11150	load_var	7,2	:	load_var	13,0	:	find_objects
11160	load_var	0,-1	:	compare	0,4,0	:	if_eq	0	:	check_first_obj
11170	check_object_found	:	load_var	0,#m	:	print_gen	0	:	STOP

Lines	11130	and	11140	are	the	same	as	the	first	example.	Line	11150	contains	a
call	to	'find_objects'	which	will	scan	the	other	command	words	entered	and
identify	up	to	two	objects.	Before	the	call	is	made,	it	is	necessary	to	set	up
variable	7	with	the	word	number	in	the	command	line	that	find_objects	is	to	start
searching	from.	In	this	example,	variable	7	is	set	to	2,	indicating	that	the	search
should	start	with	the	second	word.	It	is	also	necessary	to	set	up	variable	13	with
the	value	0	to	indicate	that	'find_objects'	should	find	an	object	if	it	is	either	in	the
same	location	as	the	player	or	held.	If	the	value	is	set	to	2,	find_objects	will	only
find	an	object	specified	if	it	is	held.

The	find_objects	routine	returns	information	about	what	objects	(if	any)	it	finds
in	variables	4	and	5.	Variable	4	refers	to	the	first	object	in	the	command	line,	and
5	refers	to	the	second.	The	values	in	variables	4	and	5	will	be	any	of	the
following	after	find_objects	returns	control:

-1	 if	there	was	no	object	specified	in	the	command
-2 if	an	object	is	specified	but	cannot	be	found	at	the	current	location	(or	not

held	if	V13=2)
-3 if	there	are	more	than	one	of	the	specified	objects
N any	non-negative	number	indicates	that	the	appropriate	object	(number	N)

was	specified	and	found

Line	11160	checks	the	value	in	variable	4	(the	first	object	specified);	if	it	is	equal
to	-1	(indicating	that	no	object	was	specified),	it	calls	the	routine
'check_first_obj',	which	prints	a	message	and	then	returns	control	to	the	ACT
pre-parser.

Line	11170	calls	the	routine	'check_object_found'.	This	routine	will	check
variable	4	and,	if	it	is	negative,	print	a	suitable	message,	after	which	it	returns	to

the	ACT	pre-parser.	If	the	object	has	been	found,	it	returns	control	to	the
program,	where	the	remainder	of	this	line	causes	general	message	#m	to	be
printed.

This	last	example	is	very	similar	to	the	routine	'check_feel'	(player	program	lines
9710	to	9810),	which	parses	commands	to	FEEL	an	object.	The	player	program
includes	several	subroutines	that	use	the	'find_objects'	routine.	An	example	of
one	that	can	make	use	of	both	objects	is	'check_take'	(lines	4210	to	4510).	This
routine	is	further	complicated	because	it	will	allow	a	form	of	the	command	that
involves	two	'verb'	words,	'PICK	UP'.

You	may	use	existing	routines	as	'patterns'	to	model	new	ones	on,	but	be	careful.
Some	of	the	routines	include	extra	built-in	features	that	may,	if	copied	blindly	to
new	functions,	result	in	undesired	effects.	It	is	always	a	good	idea	to	base	your
new	routines	on	the	examples	provided	and	add	extra	features	as	you	need	them.

4.2	Changing	the	Lighter	to	a	Box	of	Matches

It	is	simple	to	make	cosmetic	changes	to	the	lighter	so	that	it	is	described	as
'MATCHES'	or	a	'MATCH'	for	example.	The	object	description	for	the	lighter
(object	number	3)	will	need	to	be	changed	in	the	same	way	as	described	in
Section	2.1.1,	by	using	the	MSGedt	utility	and	re-compressing	the	three	text
files,	to	form	a	revised	version	of	the	TEXT_dta	file.

A	number	of	minor	changes	are	required:

The	list	of	words	that	the	object	will	be	recognised	by,	as	described	in
Section	2.2.2,	must	be	altered.

Any	new	words	must	be	added	to	the	vocabulary	file	WORD_dta	by	using
the	utility	VOCedt,	we	will	need	'MATCH'	and	'MATCHES'	for	this
example	(each	should	be	given	the	'tag'	number	5,	to	flag	them	as	nouns)
and	also	'STRIKE'	(tag	3,	a	verb).

Change	some	of	the	general	messages	that	refer	to	the	lighter.

The	messages	to	alter	are	91,	92,	93,	97	and	98.	The	new	messages	should	be
consistent	with	the	alterations	made	to	the	object(s).	An	obvious	example	would
be	to	change	message	91	to	read:

		'One	of	your	matches	is	now	burning	away	with	a	nice	bright	flame.'

All	that	is	left	to	do	is	to	modify	the	player	program	routine	'check_press',	so	that
PRESSING	a	match	has	no	effect,	and	adding	a	new	routine	that	will	allow	the
command,	'STRIKE	A	MATCH',	to	work.	Deleting	lines	6860	to	6910	of	the
'Player'	program	will	stop	the	command	'PRESS	LIGHTER'	(becoming	PRESS
MATCHES)	from	doing	anything.	The	'check_press'	command	will	still	respond
to	this	command,	but	only	with	the	standard	'NOTHING	HAPPENS'	message.

All	that	is	required	to	complete	the	modification	is	to	add	an	extra	routine	that
will	respond	to	the	command	STRIKE	MATCHES.	Now	use	the	VOCedt	utility
to	add	the	word	STRIKE	to	the	vocabulary.	The	next	free	word	'slot'	in	the
supplied	vocabulary	is	149,	but	you	might	have	added	other	words,	so	let's	say
that	the	new	command	word	is	number	#n.	The	following	routine	will	add	the

command:

		11180	name	check_strike

		11190	word1	:	subtract	1,#n	:	if_ne	1	:	RETurn

		11200	check_for_light_sources	:	if_eq	0	:	read_loc	0,0,0	:

								load_var	1,10	:	load_var	2,1	:	bittst_loc	0,1,2	:

								if_eq	2	:	load_var	13,2

		11210	load_var	7,2	:	find_objects	:	load_var	0,-1	:	compare	0,4,0	:

								if_eq	0	:	RETurn

		11220	check_object_found

		11230	load_var	0,3	:	compare	0,4,0	:	if_ne	0	:	GO	TO	11290

		11240	load_var	0,15	:	load_var	1,2	:	bittst_obj	4,0,1	:	if_ne	1	:

								load_var	0,90	:	print_gen	0	:	STOP

		11250	load_var	0,0	:	read_loc	0,0,0	:	subtract	0,3	:	if_lt	0	:

								GO	TO	11280

		11260	subtract	0,2	:	if_ge	0	:	GO	TO	11280

		11270	load_var	0,92	:	print_gen	0	:	STOP

		11280	load_var	0,3	:	load_var	1,15	:	load_var	2,2	:	bitset_obj	0,1,2	:

								load_var	0,93:print_gen	0:load_var	15,100:check_for_bangs	:

								STOP

		11290	load_var	1,#m	:	print_gen	1	:	STOP

This	routine	is	almost	identical	in	format	to	'check_press'	and	it	works	in	the
following	way.

The	routine	'word1',	in	the	first	line	of	the	routine	(11190),	is	a	call	to	another
routine	in	the	player	program	(line	10030).	This	gets	the	number	of	the	first
word	of	the	player's	command	into	variable	1.

The	rest	of	this	line	is	similar	to	the	other	examples	and	checks	to	see	if	the
command	is	'STRIKE'.	Line	11200	sets	up	the	value	in	variable	13	according	to
whether	it	is	light	(or	not)	at	the	current	location.	This	is	necessary	since	it
allows	the	subsequent	call	to	find_objects	to	exclude	objects	that	are	not	held
from	being	found	if	it	is	dark.

Lines	11210	and	11220	are	similar	to	the	previous	examples;	after	each	has	been
executed,	the	number	of	the	specified	object	will	be	in	variable	4.	Line	11230
checks	to	see	is	the	object	specified	is	number	3.	If	it	is,	the	program	will
continue	with	line	11240;	if	not,	a	jump	is	made	to	line	11290,	which	prints	out
general	message	number	#m.	This	should	be	a	suitable	response	when	nothing
special	happens.

For	example,	you	might	make	message	#m	"Striking	that	isn't	very	useful.".	The
equivalent	line	in	'check_press'	allows	one	of	three	messages	to	be	output.	You
could	also	do	this	here	by	modifying	line	11290	so	that	it	is	similar	to	line	6930.

In	this	case,	the	use	of	the	routine	'random_message3'	requires	variable	1	to
contain	the	number	of	the	middle	message	of	a	group	of	three.	Lines	11240	to
11280	deal	with	actually	setting	fire	to	object	number	3.	The	required	action
and/or	message	to	be	output	depends	on	whether	the	match	is	already	alight	and
also	on	where	the	player	is.

The	matches	will	be	blown	out	by	the	draughts	in	some	locations	in	the	same
way	as	the	lighter	is.	Removing	this	feature	is	explained	in	Section	2.7.3.

Finally,	you	must	add	a	call	to	the	new	routine	'check_strike'	in	the	player
program.	Since	the	routine	should	work	in	the	dark	as	well	as	in	lighted
locations,	it	is	necessary	to	position	the	call	before	line	500,	which	returns
control	to	the	ACT	pre-parser	if	it	is	dark.	A	suitable	location	would	be:

		441	check_strike	:	REMark	Special	actions	if	word	number	1	is	STRIKE

4.3	Using	the	Routine	YES_or_NO_Response

A	special	feature	is	built	into	the	player	program,	allowing	suitable	responses	to
be	made	to	certain	messages.	The	feature	works	through	the	routine
'yes_or_no_response',	which	is	included	in	the	player	program	lines	1810	to
2090.

This	routine	is	designed	to	detect	the	words	YES	or	NO	in	response	to	a	message
previously	output	by	the	program.	It	works	in	the	following	way:	Location	0
parameter	3	is	used	as	a	flag	that	initiates	yes_or_no_response.	If	this	flag	is
zero,	line	1900	returns	control	to	the	player	program.

In	this	way,	if	the	player	types	the	command	YES	or	NO	when	no	special
condition	is	primed,	one	of	the	"I	don't	understand"	messages	will	eventually	be
output	once	all	the	other	routines	in	the	decode	chain	have	had	their	turn	to	try	to
respond	to	the	command.	If	the	flag	is	not	zero,	this	represents	a	given	special
condition.	In	this	case	one	of	two	things	can	happen:

If	the	player	doesn't	enter	a	YES	or	NO	command,	'yes_or_no_response'
will	clear	the	special	condition	and	return	control	to	the	player	program.
This	is	dealt	with	by	lines	1910	and	1920.

If	the	command	is	YES	or	NO,	several	things	happen.	Line	1930	sets	up
variable	0	with	a	negative	number	if	the	command	is	YES	and	a	positive
number	if	NO.	Subsequent	lines	test	for	each	possible	value	of	the	special
condition	flag.

For	example,	lines	1940	to	1970	will	respond	if	the	flag	is	1,	which	corresponds
to	the	special	condition	to	QUIT	the	game.	This	flag	value	is	set	by	the
'check_quit'	command.	Note	that	the	command	QUIT	doesn't	directly	stop	the
game.	Instead	the	player	must	respond	YES	to	the	message	printed	by	the
'check_quit'	routine.

In	this	case	the	game	is	actually	stopped	by	line	1970	in	the
'yes_or_no_response'	routine.	If	the	player	responded	NO	to	the	quit	message,
line	1960	would	return	control	to	the	ACT	pre-parser	ready	for	the	next
command.

If	the	flag	wasn't	set	to	a	value	of	1,	then	lines	1980	to	2000	will	check	for	and
respond	to	a	value	of	2.	In	this	case	both	YES	and	NO	will	produce	a	particular
message	that	forms	a	suitable	response	to	the	original	situation	that	set	the
condition	flag.

Other	condition	flag	values	are	tested	for,	and	acted	on	if	found,	in	turn.	If	the
condition	flag	number	is	not	catered	for	within	'yes_or_no_response',	control	is
returned	to	the	player	program	with	no	action	being	taken.

Flag	values	1	to	4	may	be	set	by	the	player	program.	You	may	add	any	number
of	extra	values	up	to	the	maximum	flag	value	of	255.	For	example,	you	might
construct	a	routine	that	responds	to	the	command	HIDE	with	a	message	"Do	you
think	that	will	do	any	good?".

If	you	make	this	routine	set	the	special	condition	flag	to	a	value	of	5,	you	could
add	three	extra	lines	of	code	to	'yes_or_no_response'	that	will	respond	with
suitable	messages	for	either	a	YES	or	a	NO.

The	extra	lines	should	have	the	same	form	as	lines	2040	to	2060,	but	with	the
message	numbers	altered	according	to	which	new	messages	you	want	to	output
in	response.

Notice	that	the	GO	TO	target	line	number	in	line	2040	will	have	to	be	altered	to
point	at	the	first	of	your	new	lines,	which,	in	turn,	should	pass	control	to	line
2070,	if	the	flag	isn't	5.

How	about	the	messages	"Then	you	must	be	a	bit	stupid.

"	if	the	response	is	YES	and	"Well,	you	have	some	sense	at	least!"	if	the	response
is	NO	in	this	simple	example?

4.4	"Magic	Transform"	Words

A	feature	often	used	in	adventure	games	is	that	of	a	"magic"	word	which	has	a
special	effect.	Often	this	is	used	to	allow	the	player	to	be	transported	from	one
place	to	another	without	having	to	use	the	paths	that	actually	exist.	The	inclusion
of	such	a	system	in	ACT	is	achieved	by	the	following	routine.

		11300	name	magic_transform

		11310	word1	:	subtract	1,#n	:	if_ne	1	:	RETurn

		11320	load_var	0,0	:	read_loc	0,0,0	:	subtract	0,#m	:

								if_ne	0	:	load_var	0,#p	:	print_gen	0	:	STOP

		11330	load_var	1,#d	:	update_loc	0,0,1	:	load_var	3,1	:

								load_var	2,#m	:	update_loc	0,3,2	:	load_var	0,10	:

								bittst_loc	1,0,2	:	if_ne	2	:	GO	TO	11350

		11340	check_if_light	:	check_for_bangs	:	describe_location	:

								load_var	0,0	:	read_loc	0,0,0	:	load_var	1,0	:

								describe_objects	:	STOP

		11350	check_if_light	:	check_for_bangs	:	load_var	0,#d	:

								multiply	0,2	:	print_loc	0	:	load_var	0,#d	:

								load_var	1,0	:	describe_objects	:	STOP

Line	11310	looks	for	word	number	#n,	which	should	be	the	"magic"	word	the
routine	is	to	respond	to.

Line	11320	checks	the	current	player	location.	If	this	is	equal	to	#m,	the	program
passes	to	line	11330.	If	the	player	isn't	at	location	#m,	this	line	prints	out	general
message	#p	and	returns	control	to	the	ACT	pre-parser.	Message	#p	should
indicate	to	the	player	that	nothing	special	happens.

Line	11330	updates	the	player's	current	location	parameter	(location	0,	parameter
0)	to	#d,	which	is	the	"destination".	Location	0	parameter	1,	the	player's	previous
location,	is	also	updated	to	#m.

The	last	commands	on	this	line	examine	parameter	10	bit	0	of	the	"destination".
If	this	is	set	(ie	the	player	has	visited	the	destination	before),	control	is	passed	to
line	11350.	If	the	bit	is	clear	(player's	first	visit	to	#d),	control	goes	on	to	line
11340.

The	two	lines	11340	and	11350	output	the	long	or	the	short	form	of	the	location
description	respectively,	as	well	as	describing	objects	etc.	The	routine
'magic_transform'	will	respond	to	a	given	magic	word	only	if	the	player	is	in	the
correct	"starting"	location,	and	move	him	to	the	"destination".	If	he	is	not	at	the
starting	location,	the	routine	will	simply	output	a	message	saying	that	'nothing

interesting	has	happened',	or	whatever	else	you	choose	to	say.

Possible	improvements	to	this	routine	would	be	to	arrange	for	a	message	to	be
output	in	lines	11340	and	11350,	prior	to	the	location	description	output.	This
message	could	be	simply	"Done.",	or	maybe	something	more	spectacular	such	as
"There	is	a	blinding	flash	of	light	as	you	utter	the	magic	word,	and	you	are
mystically	transported	to	a	new	location.".

It	might	also	be	useful	to	allow	the	same	routine	to	transport	the	player	back
from	the	"destination"	to	the	original	location	(reversible	transform).

If	you	want	more	than	one	transform	in	your	game,	you	could	either	duplicate
several	different	copies	of	this	example	routine,	each	with	suitably	different
locations	and	magic	words	defined,	or	you	might	save	space	by	modifying	the
example	to	allow	multiple	location/word	use.

Finally,	routine	'check_for_bangs'	is	included	in	this	example,	but	it	is	only
required	if	the	destination	is	a	location	where	you	need	to	check	for	an	explosion
(which	would	only	be	location	7	in	the	Mini_Adventure).	Do	not	include	the	call
if	the	feature	isn't	required.

4.5	The	Use	of	Flags	to	Control	Particular	Events	or	Commands

By	now	you	will	be	familiar	with	most	of	the	features	of	ACT	and	the	ACT
programming	language.	The	use	of	flags	to	act	as	switches	is	very	common	in
both	the	event	and	the	player	programs;	several	of	the	previous	Sections	make
use	of	flags	in	this	way.

If	you	are	still	a	bit	doubtful	as	to	how	a	"flag"	operates,	you	may	find	the
following	explanation	useful.

A	flag	is	just	a	way	of	remembering	a	single	piece	of	information.	You	could	use
the	system	variables	as	flags,	or	any	parameter	of	any	location	or	object,
provided	it	isn't	being	used	for	some	other	purpose.	Since	Location	5	parameter
0	is	not	used	for	anything,	for	example,	this	is	available	for	use	as	a	flag.

The	use	of	variables	or	parameters	as	flags	is	rather	wasteful	of	space,	though.
All	a	flag	has	to	do	is	remember	one	of	two	states:	either	"true"	or	"false"	(a
logical	1	or	0).

This	can	be	done	quite	adequately	by	a	single	bit	in	any	of	the	object	or	location
parameters;	and	the	ACT	system	language	has	several	commands	built	in	to	set,
clear	or	examine	single	bits	as	flags.

Illustrating	this	feature,	parameter	10	of	each	location	is	dedicated	for	use	as
flags,	and	currently	two	of	the	eight	possible	flags	are	actually	used.

The	flags	are	numbered	from	0	to	7	and,	as	described	in	Section	3.3.3,	bit	0	of
each	location	parameter	10	is	used	to	indicate	if	a	location	has	been	visited
before,	while	bit	1	is	used	to	indicate	if	the	location	is	lit	(independently	of	a
light-emitting	object,	such	as	a	torch).

The	ACT	program	commands	used	to	manipulate	a	flag	are	the	'bitset',	'bitclr'
and	'bittst'	commands.	Look	at	'Player'	program	line	1390.

The	third	from	last	command	in	this	line	is	bittst_loc	2,1,0.	The	values	in	the
three	variables	are	set	up	by	the	preceding	parts	of	the	routine	to	be	the	current
location,	10	and	0	respectively.	From	the	description	of	this	command	(Section
3.2.4)	you	will	see	that	this	will	result	in	the	value	of	bit	number	0	in	parameter

10	of	the	current	player	location	being	loaded	into	variable	0.

In	this	way	the	move_command	routine	can	determine	if	a	particular	location	has
been	visited	before.

The	value	of	this	flag	is	normally	set	to	zero	initially	(by	the	LOCedt	utility
program	when	the	location	data	is	set	up).	The	value	is	updated,	once	a	location
has	been	visited,	by	line	1600	in	the	player	program	(the	routine
describe_location).	You	will	see	the	command	bitset_loc	1,2,0	in	this	line,	which
changes	the	value	of	the	flag	to	1.

You	can	use	any	number	of	flags	in	your	additions	to	the	ACT	system.	You	can
use	the	remaining	bits	(number	2	to	7)	in	location	parameters	10	or	bits	5	to	7	of
object	parameters	18.

If	you	need	more	flags,	use	the	LOCedt	utility	to	add	more	parameters	to	either
the	objects	or	the	locations.	Doing	so	will	not	affect	the	operation	of	the	ACT
programs,	although	it	will	increase	the	size	of	the	adventure	game	produced
slightly	and	also	the	size	of	the	SAVE	file.

4.6	Arranging	for	a	Time-Delayed	Event

It	is	easy	to	introduce	time	delays	for	particular	events	by	making	use	of	the
'Event'	program.	As	an	example,	consider	the	routine	'check_lighter'	(lines	1110
to	1210	of	the	Event	program).

It	is	the	job	of	this	routine	to	extinguish	the	lighter,	after	a	suitable	delay,	if	the
player	doesn't	bother	to	do	so	by	using	a	command	such	as	'EXTINGUISH
LIGHTER'.	The	control	of	the	time	that	the	lighter	is	allowed	to	burn	is
governed	by	variable	15,	which	is	dedicated	to	this	purpose	in	the
Mini_Adventure.

Line	1170	checks	whether	variable	15	is	zero.	If	it	is,	the	routine	returns	to	the
calling	program,	since	this	means	that	the	lighter	isn't	alight.

Note	that	it	would	have	been	possible	to	find	out	if	the	lighter	was	burning	by
examining	object	3	(the	lighter)	parameter	15	bit	2,	the	normal	way	to	see	if	an
object	is	alight.	However,	since	variable	15	is	dedicated	to	the	lighter,	it	is
simpler	to	make	a	check	based	on	this	variable.

Line	1180	subtracts	1	from	the	value	in	variable	15.	If	the	contents	are	still	non-
zero,	the	routine	will	return	to	the	calling	program	at	this	point.	If	the	contents
are	zero,	control	passes	to	line	1190.	Line	1190	does	two	things.	First	it	switches
off	bit	2	of	parameter	15	for	the	lighter	(object	3),	the	bitclr_obj	0,1,2	instruction
actually	clears	the	bit	flag.	Secondly,	if	the	lighter	is	accessible,	that	is	if	it	is	in	a
place	where	the	player	can	see	it,	a	message	is	output	that	tells	the	player	that	the
lighter	has	just	gone	out.	The	routine	object_accessible	(lines	2750	to	2960	of
the	'Player'	program)	is	used	to	see	if	the	lighter	is	visible	or	not.

The	routine	'check_lighter'	performs	several	functions:	if	the	lighter	is	burning,
the	counter	(variable	15)	is	decremented	by	1	each	time	the	event	program	runs.
When	the	value	reaches	0,	the	lighter	is	extinguished	and	an	appropriate	message
is	output.

You	can	make	up	your	own	routines	using	variables	as	counters	in	this	way.	In
this	case	you	should	use	the	LSTedt	utility	to	modify	the	file	LAST_dta	to	add
the	extra	variables	you	want	to	use	in	the	system.

The	Mini_Adventure	uses	variables	0	to	16	(17	variables	in	total),	but	you	can
allocate	up	to	255,	if	you	need	to.	For	purposes	of	compatibility	of	existing	ACT
games	with	future	additions	to	the	ACT	system,	we	recommend	that	you	do
NOT	use	variables	17	through	20	because	these	are	reserved	for	interfacing	our
new	modules	to.

The	'Event'	program	is	called	at	a	rate	of	about	twice	a	second.	If	you	load	a
variable	with	a	large	number	(the	largest	possible	is	32767),	you	would	get	a
possible	delay	of	up	to	about	4.5	hours.	If	you	need	longer	delays	than	this,	you
could	arrange	to	'cascade'	two	counters.	The	following	example	illustrates	the
use	of	location	parameters	as	counters	and	uses	cascading	of	two	separate	counts
to	achieve	a	longer	maximum	time	delay.

Object	or	location	parameters	are	limited	to	the	range	of	0	to	255;	thus	only	very
short	time	delays	are	possible	with	a	single	counter.	If	you	use	two	or	more
variables	in	place	of	the	parameters,	as	in	this	example,	you	could	get	very	long
time	delays	if	you	require	them.

		11360	name	delayed_event

		11370	load_var	0,0	:	load_var	1,9	:	read_loc	0,1,2	:	if_eq	2	:

								RETurn

		11380	subtract	2,1	:	if_ne	2	:	update_loc	0,1,2	:	RETurn

		11390	load_var	2,#n	:	update_loc	0,1,2	:	load_var	2,10	:	read_loc

								0,2,3	:	subtract	3,1	:	if_ne	3	:	update_loc	0,2,3	:	RETurn

		11400	update_loc	0,2,3	:	update_loc	0,1,3

		11410	REMark	Put	the	instructions	you	want	execured	after	the	time

		11420	REMark	delay	here.

		11430	REMark	If	you	want	the	delayed	event	to	be	repeated,

		11440	REMark	update	location	0	parameters	9	and	10	to	give	a

		11450	REMark	suitable	delay	for	the	next	event.

		11460	RETurn

The	value	#n	determines	the	period	of	the	time	delay.	To	use	this	routine	you
must	update	the	values	of	location	0	parameters	9	and	10	with	numbers	in	the
range	1	to	255.

The	delayed_event	routine	will	decrement	the	two	counters	in	turn,	giving	a	total
delay	of	#m*#n,	where	#m	is	the	value	you	initially	load	into	parameter	10,	and
#n	is	the	value	that	you	loaded	into	parameter	9	(and	also	the	same	number	as	in
the	example).	The	way	the	code	operates	should	be	apparent:	add	the	lines	of
code	you	want	to	have	executed	in	place	of	the	REMark	statements,	and	install
the	routine	into	the	EVENT	program.

The	routine	will	execute	as	part	of	the	event	program	sequence,	and	in	this	way	a
delay	of	roughly	#m*#n/2	seconds	will	occur	before	execution	of	your	added
code.

4.7	Who's	Afraid	of	the	Dark?

The	Mini_Adventure	doesn't	have	any	hidden	traps	or	problems	in	the	event	of
the	player	being	in	a	dark	location	without	a	light	source.	One	common	feature
of	many	adventure	games	is	to	arrange	for	the	player	to	be	killed	(by	some	fiend
lurking	in	dark	places),	if	he	stays	in	the	dark	too	long.	The	following	example
shows	how	such	a	feature	might	be	built	into	your	own	ACT	game	(IMAGINE
includes	a	similar	feature).

		11470	name	dark_monster

		11480	load_var	0,0	:	read_loc	0,0,0	:	load_var	1,10	:	load_var	2,1	:

								bittst_loc	0,1,2:if_ne	2:RETurn

		11490	check_for_light_sources	:	if_ne	0	:	RETurn

		11500	random	0	:	load_var	1,25000	:	compare	0,1,2	:	if_lt	2	:	RETurn

		11510	load_var	0,#m	:	print_gen	0	:	load_var	0,0	:	load_var	1,6	:

								update_loc	0,1,0	:	RETurn

This	routine	should	be	called	from	some	point	near	the	beginning	of	the	player
program;	line	number	442	would	be	a	suitable	place.	You	will	need	to	add	an
extra	general	message	(number	#m)	which	should	be	something	along	the	lines
of	"You	have	just	been	attacked	and	killed	by	a	monster	lurking	in	the	dark."

Lines	11480	and	11490	are	used	to	see	if	the	player	is	in	the	dark.	Control	is	sent
back	to	the	calling	program	if	there	is	light	at	the	current	location.

Line	11500	is	used	to	provide	a	random	chance	of	the	player	being	killed	in	the
dark.	With	the	number	25000,	as	in	the	example,	there	is	about	a	1-in-6	chance
of	being	killed	each	time	a	new	command	is	entered	when	the	player	is	in	the
dark.

Line	11510	prints	out	the	message	and	updates	the	player's	health	rating	to	0.
This	is	all	that	is	required	to	kill	the	player;	the	routine	check_if_dead	will	do	the
remaining	work	required.

You	can	improve	on	this	example,	of	course.	It	might	be	interesting	to	add	a
variety	of	different	death	messages.	It	might	also	be	interesting	to	arrange	for	the
routine	to	be	called	from	the	event	program,	either	instead	of	the	player	program,
or	maybe	as	well.

In	this	case	you	should	reduce	the	probability	of	death	each	time,	or	possibly

make	the	call	in	the	event	routine	part	of	a	repeated	delayed	event,	so	that	it	is
called	once	a	minute	or	so.

4.8	Etcetera,	etcetera

There	are	bound	to	be	numerous	examples	that	you	will	think	of	that	are	not
included	in	this	guide.	ACT	is	so	versatile	that	virtually	anything	you	might	want
to	arrange	can	be	done	in	a	game.	The	main	problem	is	likely	to	be	to	decide	the
most	logical	way	to	achieve	a	particular	feature.

The	completed	game,	IMAGINE	(sorry,	we	don't	provide	the	source	files	for
this),	includes	numerous	features	not	directly	covered	in	this	guide	and	might
provide	ideas	of	additions	that	you	will	want	to	include	in	your	own	games.	Note
that	everything	included	in	IMAGINE	is	done	using	either	the	standard	features
(as	in	the	Mini_Adventure	starting	framework)	or	by	additions	along	the	lines
illustrated	in	the	examples	in	this	guide.

If	you	have	any	suggestions	about	additions	to	the	ACT	system,	either	the
programs	or	the	manual,	we	would	be	pleased	to	hear	about	them.

5.0	SOME	FINAL	COMMENTS	ABOUT	ACT	AND	WRITING
ADVENTURE	GAMES

This	guide	is	intended	to	provide	you	with	the	information	you	will	need	to	use
ACT	to	write	your	own	adventure	game,	whether	for	your	own	entertainment	or
for	commercial	applications.	ACT	is	capable	of	producing	complex	games	to	a
very	high	standard	and	with	any	number	of	features.

You	will	need	to	provide	the	ideas	for	your	own	games,	of	course,	this	being
something	we	can't	really	help	you	with	in	the	guide.	However,	there	are	some
general	tips	on	how	to	go	about	designing	your	game	that	you	might	find	useful.
Probably	the	most	important	point	to	remember	is	that	you	should	check	each
step	of	game	development	as	you	go	along.

It	is	all	too	easy	to	add	numerous	new	locations,	objects	and	lots	of	new	routines
to	the	developing	system	programs,	all	in	one	go,	only	to	find	that	when	you	try
to	run	the	game	with	the	additions	installed,	all	sorts	of	illogical	things	happen
which	might	be	errors	in	any	one	of	the	additions	you	have	made.

We	recommend	careful	pre-planning,	on	paper,	for	a	completely	original	game.
The	following	sequence	for	building	your	game	and	adding	new	objects	or
features	to	it	is	the	way	we	recommend	you	should	proceed.

1.	 If	you	are	going	to	start	with	the	Mini_Adventure	as	the	base	for	your
game,	make	any	alterations	to	this	before	you	add	anything	new	to	the
system.	Once	you	are	happy	with	the	modified	form	of	the
Mini_Adventure,	proceed	with	the	following	stages.

2.	 Add	new	locations	and	the	appropriate	location	messages.	Re-link	the	game
and	check	that	all	the	additions	work.	This	can	be	quite	a	long	job,	since
you	will	need	to	move	around	the	game,	checking	each	direction	at	each
location.

3.	 Add	any	new	objects	along	with	the	object	messages	required.	Again	you
should	re-link	the	game	and	check	that	all	the	objects	are	where	you	want
(or	expect)	them	to	be	and	have	all	the	correct	properties.

4.	 You	should	add	any	new	features	you	want	to	the	two	system	programs;	this
step	is	the	most	likely	to	cause	trouble.

Constructing	the	Mini_Adventure,	the	author	of	the	ACT	system	had	numerous
"head-scratching"	sessions,	trying	to	understand	why	seemingly	simple	bits	of
code	didn't	do	what	was	expected!

The	best	advice	that	we	can	offer	is	in	line	with	that	for	any	complex	program:
try	to	make	your	additions	simple	until	you	are	quite	familiar	with	the	ACT
system,	and	even	then	restrict	yourself	to	adding	your	new	features	in	small
stages.	The	use	of	the	named	subroutine	feature	makes	breaking	up	complicated
pieces	of	code	into	simple	Sections	relatively	easy.

ACT	has	been	extensively	tested,	and	you	should	not	have	any	problems	with
errors	in	the	system	itself.	However,	as	with	any	large	programming	system,	it	is
not	possible	to	guarantee	that	it	is	100%	bug-free.

If	you	do	experience	any	problems,	please	write	to	Digital	Precision	

(DON'T	EVEN	THINK	OF	PHONING	-	THE	ANSWERING	SERVICE	HAS
BEEN	TAUGHT	TO	DISCONNECT	WHEN	ACT	IS	MENTIONED);	

we	will	do	our	best	to	determine	the	cause	of	any	problem	you	encounter,	and	if
a	bug	in	the	ACT	system	is	the	cause,	we	will	fix	the	fault	-	almost	as	fast	as
LIGHTNING.

Happy	adventuring!

6.0	APPENDIX	1	-	THE	GRAPHICS	DESIGNER

6.1	Overview

The	Graphics	Designer	is	a	sophisticated	drawing	program	that	is	specially
designed	to	produce	illustrations	for	adventure	games.	The	program	provides	the
facility	to	incorporate	all	of	the	shapes	that	are	'native'	to	the	QL	graphics
support,	that	is	line	drawing,	circles,	ellipses,	blocks,	arcs;	and	in	addition	the
normal	QL	FILL	facility	is	fully	supported.	However,	additional	features	have
also	been	included	that	allow	much	more	advanced	drawings	to	be	produced.
These	additions	are	also	available	to	you	directly	from	SuperBASIC,	so	that	you
can	use	them	for	other	applications	as	well	as	with	ACT.

The	Graphics	Designer	is	also	unusual	in	that	it	allows	pictures	to	be	stored	as	a
'command'	file,	that	is	as	a	set	of	drawing	instructions	that	can	be	used	to	re-
create	the	drawing.	This	has	the	advantage	that	the	space	required	to	store	even
quite	detailed	pictures	is	VERY	much	less	than	that	required	for	a	'screen	dump',
even	if	a	compressor	(such	as	the	SCNcom	utility	supplied	with	ACT	which
easily	outperforms	ALL	other	such	utilities	on	the	market)	is	used	to	produce	the
stored	screen.

In	fact	three	different	ways	of	storing	a	picture	are	provided	by	Graphics
Designer.	These	are:

1.	 Standard	32K	screen	dump	-
For	single	pictures	or	for	loading	screens	for	other	programs.

2.	 A	text	co-ordinate/command	(parameter)	file	-
This	is	a	very	compact	format	that	contains	the	'native'	instructions	used	by
Graphics	Designer	to	reconstruct	a	picture.	This	is	the	form	that	you	must
store	illustrations	in	while	they	are	still	being	developed	and	also	the	form
that	is	subsequently	processed	into	a	'composite'	picture	file	for	use	by	the
ACT	adventure	game.

3.	 As	a	SuperBASIC	program	-
This	allows	a	picture	to	be	incorporated	as	a	procedure	in	your	own
programs,	thus	providing	a	convenient	way	to	use	the	Graphics	Designer

for	applications	other	than	the	ACT	games	system.

Additional	features	that	are	provided	by	Graphics	Designer	are:

The	ZOOM	option,	used	to	allow	selected	magnification	of	areas	of	an
illustration	as	well	as	allowing	the	program	to	effectively	produce	pictures
that	are	much	bigger	than	the	QL	screen	area	(which	then	acts	as	a	'window'
into	the	much	larger	drawing).

Area	recolouring.	A	sophisticated	and	very	fast	routine	is	provided	that
allows	any	area	of	an	illustration	to	be	re-coloured.	This	routine	works	in
either	MODE	and	is	able	to	cope	completely	with	all	stipple	patterns.

6.2	The	Additional	Drawing	Routines	QFILL1	and	QFILL2

Graphics	Designer	is	supplied	with	two	additional	'filling'	routines,	QFILL1	and
QFILL2.	Both	of	these	can	be	multitasked	to	provide	an	animated	filling	effect.
QFILL1	provides	an	alternative	to	the	conventional	DRAW	and	native	QL	FILL.
A	shape	drawn	with	this	option	may	be	re-entrant	and	even	have	boundary	lines
crossing:	QFILL1	will	always	produce	a	correctly	filled	shape.	QFILL2	is	a	re-
colour	option.	It	allows	any	area	of	the	screen	to	be	re-coloured;	plain	colours	or
stipples	are	fully	supported.

Both	QFILLS	are	available	independently	of	Graphics	Designer;	they	may	be
used	from	SuperBASIC	(interpreted	or	compiled)	and	are	of	course	also
supported	by	the	ACT	adventure	writer	system.

6.3	Commands

The	following	list	provides	a	description	of	all	the	commands	available	with
Graphics	Designer.	Note	that	some	keys	do	different	things	depending	on	what
the	program	is	actually	doing.	For	example,	the	F1	key	will	normally	call	up	the
main	help	menu,	which	provides	a	summary	of	the	main	options	available	within
the	program.	However,	if	pressed	while	some	other	options	are	being	executed
(such	as	the	CIRCLE	option,	for	example),	F1	provides	a	summary	of
information	that	relates	to	the	currently	selected	option.

					Key	or	option											Function

				-------------												--------

					<F1>													Selects	main	Help	menu	-	toggles	off/on.	The

																						options	presented	in	this	menu	are	selected

																						by	pressing	the	first	letter	as	shown	in	the

																						menu.

																						

					<ESC>												Exits	most	options		without	implementing

																						changes.

																							

		Option	Letters	-	Available	with	or	without	main	menu	visible:

		

					<M>ode											Toggles	MODEs	4/8.

					

					<J>ump											Returns	cursor	to	screen	centre.

					

					<Z>oom											<1>,	default,	and	<2>	to	<8>.	Successively

																						changes	scale	to	"magnify"	at	current	cursor

																						position.	Text	can	only	be	entered	and	will

																						only	appear	at	Zoom	setting	"1".

																						

					<W>ipe											If	colour	option	is	set	to	NORMAL,	clears

																						drawing	area	to	current	paper	colour.		If

																						colour	option	is	set	to	COMPlementary	or

																						HIGHlight,	this	option	wipes	the	screen	to

																						the	current	paper	colour	and	redraws	in

																						complement	mode.

																												

					<U>ndo											Successively		deletes		previous		drawing

																						actions.

														

					<R>eset										Sets	picture	to	SCALE		1	and	cursor	to

																						starting	position,	then	redraws	the	current

																						picture.	Also	resets	all	program	parameters

																						to	original	defaults	(except	for	file	drive).

																						

					<N>ew												This	option	will	zap	the	current	picture	and

																						reset	the	SCALE	setting	to	1,	INK	to	7	and

																						PAPER	to	0.

The	following	commands	are	for	colour	control	(and	related	things).

					<O>ver	(colour)

																							<N>	NORMal	colour	representation.

																							<C>	COMPlement	-	XORs	new	colour	on	screen.

																							<H>	HIGHlight	-	this	is	similar	to	NORMal

																							except	when	text	is	output.	This	option	will

																							then	result	in	text	being	produced	on	a	STRIP

																							background	(the	strip	colour	will	be	the

																							current	PAPER	colour).

																							

					<P>APER											<0>	to	<7>	for	first	colour.

																							<0>	to	<7>	for	second	colour.

																							<0>	to	<3>	for	stipple.

																								

																							If	only	one	colour	is	required,	the	same

																							number	is	entered	twice	and	stipple	choices

																							are	not	offered.	Eight	colours	are	offered

																							in	both	modes		to	insure	that	switching

																							between	modes	supports	the	colours	available

																							to	each	mode.	Current	colour	indicated	next

																							to	"P"	window.

																						

					<I>nk													As	PAPER;	current	colour	indicated	next	to

																							"I"	window.

																							

					<F>ill												BASIC	FILL	-	toggles	on/off.		Indicates	in

																							window	2nd	from	right	(top).	This	window	is

																							normally	green	in	mode	4;	cyan	in	mode	8.

																							Also,	during	redraw	for	options	requiring

																							redraw,	this		window	is		red,	indicating

																							that	drawing	is	taking	place.

The	following	commands	are	the	main	'drawing'	options.

All	drawing	options	are	rubber-banded.	With	the	exception	of	the	DRAW	option,
shapes	may	be	moved	to	their	intended	location	and	then	set	by	pressing
<SPACE>.

		Cursor	movement					8-way.	The	cursor	can	move	and	shapes	may	be

																						drawn	'off	screen'.	This	allows	large	shapes

																						to	enter	into	the	screen	from	beyond	borders.

																						

					<D>raw											1.	8-way	<CURSOR>	movement	of	free	end	of

																									line.

																					

																						2.	Y/N	option	to	select	QFILL1	-	offered	only

																									if	the	SuperBASIC	FILL	is	NOT	selected.

																									

NOTE:		If	QFILL1	is	selected	(by	pressing	"Y"),	the	'Job	and	'repeat'

							values	required	by	the	QFILL1	routine	must	be	specified.	You

							should	read	the	appendix	'QFILLs',	which	provides	detailed

							information	on	what	both	QFILL1	and	QFILL2	are	and	how	they	work.

				

		'Job'	values:

		

			0		(this	is	the	default	obtained	by	simply	pressing	ENTER).	This

						will	result	in	the	shape	you	subsequently	enter	being	produced	in

						the	normal	way	once	you	have	finished	entering	the	lines	that

						make	it	up.	The	prompt	for	'repeats'	is	not	made.

						

		>0		The	valid	range	is	1	to	255.	This	will	set	the	fill,	once

						specified,	as	an	independent	task	on	the	QL.	This	means	that

						control	is	handed	back	to	the	Graphics	Designer	(or	the	ACT

						adventure	game	if	the	picture	is	used	for	it)	immediately;	the

						'fill'	simply		carries	on	independantly.	The		actual	value

						specified	determines	the	priority	that	the	QFILL1	task	will	run

						at.

				

		'Repeats'	values:

		

		<=0	A	value	of	zero	or	less	will	result	in	the	specified	shape	being

						'filled'	repeatedly	and	indefinitely.	Alternate	fills	will	be	in

						the	current	INK	and	PAPER	colours,	so	that	the	shape	will	appear

						to	'flash'	on	the	screen.	Note	that	within	Graphics	Designer	a

						special	pause	is	included	once	a	fill	is	started.	This	pause

						allows	you	to	see	the	effect	of	a	repeated	QFILL	on	the	screen,

						However,	once	you	continue,	it	has	been	arranged	that	all	active

						QFILL	tasks	are	stopped.	This	allows	you	to	continue	with

						constructing	a	picture	without	the	distraction	and	possible

						problems	of	the	previously	established	QFILL	shapes	on	the

						screen.	Once	a	picture	is	included	in	an	adventure	game,	however,

						any	repeating	QFILL	tasks	within	it	are	only	stopped	when	another

						picture	is	drawn.	Please	see	the	Section	describing	GDI_1_task.

				

			>0	Repeats	of	1	or	greater	work	in	a	similar	way	as	the	indefinite

						repeat	except	that	now	the	QFILL	only	repeats	for	the	specified

						number	of	times.	You	could	use	this	option	to	arrange	some

						feature	of	a	picture	to	flash	when	the	drawing	is	first	produced

						in	a	game,	for	example,	and	so	draw	the	player's	attention	to	it.

				

																						3.	Press	<SPACE>	to	set	"free"	end	of	line.

														

																						4.	If	the	QL's	native	FILL	is	on,	any	closed

																									shape	drawn	will	be	filled	(subject	to	all

																									the	normal	limitations	of	the	native	fill,

																									i.e.	shapes	may	NOT	be	re-entrant).	If	the

																									shape	is	not	closed,	no	fill	will	occur.

																									If	QL's	FILL	is	selected,	QFILL1	is	not

																									offered.

																

																						5.	If	QFILL1	is	selected,	the	shape	will	be

																									closed	from	the	current	cursor	position	to

																									the	original	cursor	position.	In	other

																									words,	QFILL1	will	always	assume	that	the

																									first	point	of	the	shape	is	joined	to	the

																									last	point.

																

																						6.	Press	<ESC>	to	EXIT.

While	the	Draw	option	is	active,	the	F1	and	F2	keys	do	the	following:

					<F1>														Provides	simple	instructions.

					

					<F2>														Provides	information	about	the	current

																							line	Section	being	drawn.

																	

					<Y>	Outline							Outline		for	a		filled	polygon		shape

																							produced	by	the	DRAW	option	(note,	NOT	the

																							QFILL1	option).		To	use	this	facility,

																							switch	FILL	on,	select	the	DRAW	option	and

																							draw	the	required	shape.	When	the	shape

																							has	been	completed	and	filled,	then

																							without	selecting	any	other	option	change

																							to	a	new	INK	colour	and	press	<Y>.	The

																							polygon	will	be		outlined	in	the	new

																							colour.

																

					<C>ircle										The	circle	is	drawn	in	outline	and	may	be

																							moved	about	the	screen	by	use	of	the

																							cursor	keys.	Once	in	the	required	place,

																							it	is	set	by	pressing	the	space	key.	If

																							the	native	QL	fill	is	on,	the	circle	will

																							be	filled;	otherwise	it	will	be	drawn	in

																							outline	only.	The	size	of	the	circle	may

																							be	altered	by	the	use	of	the	'S'	key

																							(smaller)	or	the	'L'	key	(larger).

																

					<F1>															Provides	simple	instructions.

					

					<F2>															Provides		some		information	about		the

																								current	position	and	size	of	the	circle.

																

					<E>llipse										This	is	basically	the	same	as	a	circle,

																								except	that	the	shape	can	also	be	rotated

																								and	the	eccentricity	may	be	altered.	This

																								is	done	using	the	keys	'C'	(clockwise

																								rotation),	'A'	(anticlockwise	rotation),

																								'I'		(increase		eccentricity)	and		'D'

																								(decrease	eccentricity).

																

					<F1>															Provides	simple	instructions.

					

					<F2>															Provides		some		information	about		the

																								current	position,	size,	orientation	and

																								eccentricity	of	the	ellipse.

																

					<SHIFT><8>	=	<*>			This	selects	the	QFILL2	area	recolour

																								routine.	The	action	is	to	alter	the	colour

																								of	the	area	immediately	under	the	cursor

																								to	the	current	INK	colour.	The	actual

																								area	that	is	changed	in	this	way	is

																								basically	every	pixel	on	the	screen	that

																								can	be	reached	without	crossing	a	pixel	of

																								a	different	colour.	See	the	appendix	on

																								QFILLs	for	additional	information	about

																								this	option.	Several	questions	will	be

																								presented	before	the	fill	is	started:

																								

																					a.	"Are	you	sure?	(Y/N)"

														

																					b.	Buffer	size.		Pressing	<ENTER>	accepts

																								default		buffer		of	256		bytes.		This

																								parameter	determines	how	complicated	the

																								fill	area	can	be	before	QFILL2	is	unable

																								to	fill	it	completely.	A	value	of	10000	is

																								likely	to	fill		ANY	shape,	while	the

																								default	of	256	will	only	cope	with	very

																								simple	shapes.

																

																					c.	"Job	value?"	Default	=	0.

																					

																									If	0	:	program	control	returns	when	the

																																fill	is	completed.	Fill	stops	only

																																when	finished.

																			

																									If	>0:	Fills	as	an	independent	job.

																																Program	control	returns	immediately.	

																																Fill	stops	only	when	finished.

																			

																									If	<0:	Infinitely	repeating	fill.	This

																																works	in	much	the	same	way	as	the

																																repeating		fill	available		with

																																QFILL1.	The	alternative	colour	is

																																determined	by	the	routine:	it	will

																																be	the	highest-numbered	colour	that

																																doesn't	have	any	colour	in	common

																																with	the	current	INK.

																			

					ox															This	works	in	much	the	same	way	as	CIRCLE

																									and	ELLIPSE.	The	box	may	be	rotated	('C'

																									and	'A'	keys)	and	may	be	made	<T>aller,

																									<S>horter,	<W>ider	and	<N>arrower.

																									

					<F1>																Provides	simple	instructions.

					

					<F2>																Provides		some		information	about		the

																									current	position,	size	and	orientation	of

																									the	box.

																									

					<A>rc															The	current		end	of	the	arc		may	be

																									positioned	by	use	of	the	cursor	keys.	The

																									'C'	key	will	swap	the	current	end	of	the

																									arc.	The	angle	subtended	by	the	arc	can	be

																									increased	by	use	of		the	'I'	key	or

																									decreased	by	use	of	the	'D'	key.	If	the

																									native	fill	is	on,		the	arc	will	be

																									automatically	closed	in	and	then	filled

																									once	it	is	fixed.

																

					<F1>																Provides	simple	instructions.

					

					<F2>																Provides		some		information	about		the

																									current	position,	size	and	orientation	of

																									the	arc.

																

					<T>riangle										The	triangle	is	moved	one	corner	at	a	time

																									with	cursor	keys;	press	'C'	to	change

																									corners.	An	apex	can	be	moved	across	the

																									triangle's	base	for	effective	inversion.

																

					<X>	Text												To	add	text	to	a	picture,	you	should	make

																									sure	that	the	current	ink	is	the	required

																									text	colour,	then	press	the	'X'	key.	The

																									following	information	will	be	requested

																									and	actions	must	be	performed:

																									

																						1.	Required	CSIZE.

																						2.	Select	(or	not)	surround	writing.

																						3.	Required	text	string	(max	25	characters).

																						4.	Position	the	string	as	required.

																						5.	Press	<SPACE>	to	set.

The	following	options	are	provided	as	'aids'	to	help	in	drawing	pictures.

				<Q>uery														A	review	option,	allows	stepping	back

																									through	a	drawing	to	view	the	x,y	co-ords,

																									shape	and	option	used	for	each	element.

																									

																									Directives:	<P>rior	<N>ext		<Q>uit

																									

					<G>rid														This	provides	a	grid	of	lines,	either

																									solid	or	dotted,	that	can	be	used	as	a

																									framework	to	help	when	drawing	a	picture.

																									Note	that	the	option	is	provided	to	Keep

																									the	grid	in	the	picture	for	the	Screen

																									dump	or	SuperBASIC	output;	however,	a

																									completed	ACT	game	will	not	reproduce	a

																									grid.

																

					<H>old														This	allows	a	time	delay	between	drawing

																									of	successive	elements	of	a	picture	when

																									reproduced	by	Graphics	Designer.	This

																									option	has	no	effect	when	the	picture	is

																									drawn	by	a	completed	game.

The	following	commands	are	associated	with	file	handling.

					<SHIFT><ESC>									Change	default		file	device.	Presently

																										defaults	to	flp2_.

																

					<V>iew															Directory	from	default	drive.	<CTRL><F5>

																										to	pause	directory.	Additional	options:

																

																										<L>oad	<K>ill	(delete)	<S>ave	

																

					<L>oad															Load	a	previously	saved	Graphics	designer

																										picture	(with	the	_txt	extension).

																

					<S>ave															A	picture	may	be	saved	in	three	formats:

																										as	a	32K		screen	dump,		as		a

																										coordinate/command	file,	or	as	a

																										SuperBASIC	program.	The	file	will	be

																										given	an	extension	to	the	name	specified

																										according	to	the	save	type	chosen.	This

																										will	be	_scn	for	a	screen	dump,	_txt	for

																										the	coordinate	file	and	_bas	for	the

																										SuperBASIC	dump.	Note	that	only	the	_txt

																										files	can	be	read	back	into	Graphics

																										Designer	or	used	to	make	a	composite

																										picture	file	for	use	by	an	ACT	adventure.

																										

					<K>ill															File	delete	(from	default	drive).

6.4	The	PIC1	Utility

The	PIC1	utility	is	a	SuperBASIC	extension	which	is	installed	automatically	by
the	ACT	system	BOOT	file.	This	utility	provides	the	fastest	way	of	re-producing
Graphics	Designer	drawings,	combined	with	the	smallest	possible	picture
storage	space.

In	order	to	use	a	picture	in	an	ACT	game	it	is	necessary	to	convert	the	picture
_txt	file	to	a	more	compact	format	by	using	the	GDI_1_task	utility.	The	resulting
file	(which	has	the	extension	_APIC	by	default)	leaves	out	certain	information
included	in	the	normal	_txt	files,	which	allows	support	for	some	of	the	features
provided	by	Graphics	Designer.

This	means	that	the	_APIC	files	cannot	normally	be	inspected	except	by
reproducing	them	in	an	ACT	adventure	game.	However,	since	it	might	often
prove	useful	to	be	able	to	reproduce	pictures	converted	in	this	way,	we	have
included	the	PIC1	utility	(which	is	basically	a	copy	of	part	of	the	code	used	in
the	machine-code	module	used	in	ACT).	You	can	then	open	a	picture	file
produced	by	the	GDI_1_task	utility	to	a	SuperBASIC	channel	(#n)	and	use	the
command:

								PIC1	#n

to	reproduce	the	picture;	you	can	also	repeatedly	re-draw	the	same	picture,	if	you
wish.	If	unspecfied,	PIC1	will	use	channel	#3	as	the	default.

PIC1	will	support	the	QFILL1	and	QFILL2	options.	If	one	of	these	is	used	in	a
picture	to	produce	a	repeating	fill,	you	can	also	use	PIC1	to	stop	the	fills	by
entering	the	command:

								PIC1	-1

NOTE:	This	will	only	work	on	fill	jobs	created	by	PIC1.	If	you	have	your
Graphics	Designer	extensions	loaded	and	have	used	either	QFILL1	or	QFILL2
directly	to	draw	a	repeating	fill,	then	either	of	these	may	be	stopped	only	by	the
appropriate	call	to	QFILL	1	or	2.	Conversely,	PIC1	cannot	itself	stop	a	fill	job
created	by	either	of	the	QFILL	routines.

You	can	also	stop	a	repeating	picture	drawn	by	PIC1	by	using	PIC1	to	draw
another	picture	which	has	been	prepared	with	the	option	to	stop	all	current	fill
jobs,	as	described	later.

There	is	more	information	about	PIC1	in	the	appendix	'Linking	Illustrations	into
an	ACT	Game'	and	also	in	the	appendix	'QFILLs'.

7.0	APPENDIX	2	-	LINKING	ILLUSTRATIONS	INTO	AN	ACT
GAME

This	Section	describes	how	you	can	add	illustrations	to	an	ACT	text	adventure.
Facilities	are	provided	to	allow	drawings	produced	either	by	the	Graphics
Designer	(included	with	the	ACT	kit)	or	by	ANY	other	drawing	utility	to	be
included	in	your	games.	In	addition,	several	of	the	facilities	provided	can	be
used	'externally'	to	the	ACT	system,	directly	from	SuperBASIC	for	example,	in
order	to	provide	illustrations	for	other	applications.

It	is	recommended	that	you	are	familiar	with	both	the	text	part	of	the	ACT
system	and	also	the	Graphics	Designer	before	attempting	to	use	the	facilities
described	in	this	Section.

When	used	with	the	ACT	adventure	writing	system,	these	modules	provide	a
flexible	means	to	add	graphics	to	ACT.	In	its	basic	form	the	Video	Interface	Kit
provides	a	sophisticated	system	allowing	each	location	in	an	ACT	adventure	to
be	displayed;	each	object	can	also	be	incorporated	into	the	Location	pictures,
whenever	and	wherever	required.

In	common	with	the	flexibility	inherent	in	ACT	itself,	this	Video	picture	system
can	be	easily	extended	to	enable	other	pictures	or	features	to	be	incorporated.

7.1	The	Basics:	How	to	Add	Pictures	to	ACT

In	order	to	add	pictures	to	an	existing	ACT	text	game,	there	are	two	basic	steps
that	must	be	taken:

1.	 Add	the	required	machine-code	picture	extensions	to	the	game	and
incorporate	the	required	additions	into	the	PLAYER	and	EVENT	system
programs.

2.	 Produce	the	picture	data	file	ready	for	the	modified	game	to	extract	pictures
from	as	they	are	needed.

7.1.1	Adding	the	Picture	Extensions	to	an	ACT	Game

This	also	involves	two	steps:

1.	 Load	each	ACT	system	program	into	your	QL	in	turn,	and	then	MERGE	the
appropriate	merge	file	supplied	with	this	kit	(PLAYER_prog_additions	and
EVENT_prog_additions).	Each	modified	version	of	the	two	system
programs	should	then	be	separately	saved	on	your	working	medium	and
given	a	suitable	name	to	identify	it	as	a	'picture'	version	of	the	system
program.	

Once	this	is	done,	use	the	BASasm	assembly	program	to	assemble	the	two
modified	files.	We	use	the	name	PROGPIC_dta	for	the	compiled	program
file	of	the	development	version	of	Mini_Adventure	supplied	with	ACT.	

2.	 Re-link	the	adventure	game	using	LINKER_task,	but	substitute	the	file
'PROGPIC_dta'	(or	whatever	you	decide	to	call	it)	for	'PROG_dta'	and
either	'LASTpic_dta'	or	'LASTpic_QFILL_dta'	for	'LAST_dta'.

If	you	are	unsure	about	these	steps,	you	should	familiarise	yourself	with	how
each	of	the	ACT	system	programs	operates	by	reading	the	relevant	Sections	of
the	ACT	User	Guide.

The	choice	between	'LASTpic_dta'	and	'LASTpic_QFILL_dta'	depends	on
whether	you	intend	to	use	either	of	the	QFILL	features	available	with	Graphics

Designer.	If	you	don't	use	either	of	these	features	in	the	pictures	you	intend	to
incorporate	into	your	adventure	game,	use	'LASTpic_dta',	which	will	save	over
3K	of	memory.	If	you	do	use	either	of	the	QFILL's	in	any	of	the	pictures	to	be
included,	you	must	use	'LASTpic_QFILL_dta'.

If	you	have	incorporated	changes	into	either	of	the	two	ACT	system	programs,
you	should	check	that	none	of	your	modifications	will	either	affect	or	be	affected
by	the	additions	in	the	two	merge	files.	Each	of	these	contains	modifications	to
existing	lines	in	both	PLAYER_prog	and	EVENT_prog,	as	well	as	additional
lines	and	new	subroutines.

7.1.2	Producing	the	Composite	Picture	File

An	ACT	adventure	which	is	solely	text	is	ultimately	assembled,	using	the
various	ACT	utilities,	into	a	single	file.	Where	illustrations	are	to	be	used	with
an	ACT	adventure,	two	files	are	required;	this	Section	gives	the	details	for
producing	the	composite	picture	file.

All	the	pictures	that	are	to	be	produced	by	an	illustrated	ACT	adventure	are
combined	into	a	single	data	file.	This	process	is	performed	by	the	utility	program
GDI_2_task.

This	utility	allows	you	to	combine	both	Graphics	Designer	files	(after	they	have
been	pre-processed	by	the	GDI_1_task	utility)	and	also	files	from	the	screen
compressor	SCNcom_task.

This	flexibility	allows	you	to	make	use	of	the	very	compact	format	file	that	the
Graphics	Designer/GDI_1_task	combination	produces	for	the	majority	of	your
illustrations,	but	also	to	include	any	number	of	pictures	produced	by	other
drawing	programs.

The	ACT	picture	system	has	been	designed	to	expect	individual	pictures	for	each
location	and	object	in	the	game.	These	pictures	are	drawn	automatically
whenever	they	are	needed	and	are	linked	to	the	logic	of	the	text	part	of	the
adventure.	Towards	this	end,	the	following	rules	have	been	adopted	by	the	ACT
Graphic	System:

1.	 A	picture	will	be	drawn	for	a	location	ONLY	if	the	location	is	lit.	If	there's

no	illumination,	the	screen	will	go	dark.	

2.	 The	picture	is	updated	if	it	is	lit	AND	whenever	the	player	moves	to	another
place	or	issues	the	LOOK	command.	

3.	 Objects	are	drawn	only	if	they	are:	

1.	 at	the	current	location	AND	not	held;
2.	 not	inside	OR	resting	on	another	object.

4.	 If	an	object	displayed	in	the	picture	is	picked	up,	the	whole	picture
(including	any	remaining	objects)	is	re-drawn.	If	an	object	currently	held	is
dropped,	it	is	simply	added	to	the	picture	without	a	re-draw.	Objects	are
always	superimposed,	i.e.	one	on	top	of	the	other,	if	they	happen	to	be
drawn	as	overlapping.	

5.	 The	system	automatically	keeps	a	check	on	the	current	state	of	illumination.
If	the	only	light	source	is	extinguished,	or	simply	burns	away,	then	the
screen	will	go	blank.

Location	pictures	start	with	location	number	1	(location	0	isn't	used	as	a
Location	in	ACT),	while	object	pictures	start	with	object	number	0.	Each
location	and	object	must	have	a	picture	associated	with	it,	although	this	can	be	a
simple	"null"	(blank	screen),	as	required.

The	correct	order	for	producing	your	composite	picture	file	starts	with	Location
1,	up	to	the	total	number	of	Locations	defined	in	the	game.	The	object	pictures
are	added	after	the	last	Location	picture,	starting	with	object	number	0.

After	the	Locations	and	Objects,	the	special	picture	BLANK_APIC	which	must
be	produced	by	the	GDI_1_task	utility	from	the	file	BLANK_txt,	supplied	with
the	kit,	must	be	included.	This	is	used	by	the	system	to	clear	and	reset	the
window	sizes	at	certain	times	during	the	game.

Any	extra	pictures	are	added	after	the	BLANK_APIC	file.	One	such	picture,	the
explosion,	is	included	with	the	Mini_Adventure	demonstration.	The	procedures
required	to	service	it	are	also	included	in	the	two	program	merge	files.	Section
7.5	of	this	manual	explains	how	you	can	add	more	pictures.

The	name	you	choose	for	the	composite	picture	file	is	important.	The	ACT
adventure	game	must	be	told	which	file	it	is	to	read	the	illustrations	from.
Looking	at	the	names	used	for	the	Mini_Adventure	demonstration	game	will
give	you	an	idea	how	this	is	done.

You	will	see	that	the	supplied	composite	picture	file	for	Mini_Adventure,
MINI_save_pic,	has	a	name	that	is	related	to	the	ACT	SAVE	file	name	used	to
store	the	game	position	through	the	ACT	"SAVE"	command.	The	video	system
will	always	search	for	the	picture	file	on	the	same	device	the	SAVE	file	is
created	on	and	will	use	the	filename	formed	by	adding	the	extension	_pic	to	the
SAVE	file	name.

As	explained	in	the	ACT	User	Guide,	you	can	change	the	SAVE	file	name	or
device	by	editing	the	approriate	entry	in	the	file	LAST_dta.	So,	to	alter	the
SAVE	name	and	also	the	corresponding	picture	file	name,	use	the	LSTedt_task
utility	to	edit	LASTpic_dta	or	LASTpic_QFILL_dta,	as	appropriate.

Finally,	you	might	wonder	what	the	picture	associated	with	Location	5,	the
Object	dump,	might	be	used	for.	Since	this	picture	can	never	be	reproduced	as	a
normal	Location	during	a	game,	it	is	convenient	to	arrange	for	it	to	be	used	as
the	game's	"Title"	or	"loading'	screen".	This	is	done	automatically	by	the
additions	in	the	merge	files,	and	this	picture	will	be	drawn	as	soon	as	the	game	is
loaded.

7.2	Details	of	the	Utility	Programs

The	program	utilities	supplied	with	this	kit	are	very	simple	to	use.	They	are
described	in	some	detail	in	the	following	Sections.

7.2.1	SCNcom,	the	Screen	Compressor

This	program	is	run	using	the	EXEC	command;	you	shouldn't	use	the	EXEC_W
variation,	since	part	of	the	design	of	the	compressor	assumes	that	the	screen	to
be	compacted	will	be	loaded	AFTER	the	utility	is	run.	Once	started,	SCNcom
can	remain	memory-resident	although	inactive,	but	be	repeatedly	re-activated
whenever	a	picture	is	to	be	compressed.

When	it	is	first	started,	and	again	after	each	screen	is	compressed,	the	utility	will
ask	for	an	output	file	to	store	the	next	screen	in.	Once	this	file	is	specified,	the
utility	will	"sleep"	but	keep	a	check	on	the	keyboard	periodically	while	it	waits
for	the	special	"activation"	command.	This	activation	is	initiated	by	the
keypresses	<CTRL>&<N>	(hold	down	<CTRL>	and	then	press	<N>).	This
should	be	done	only	when	the	picture	you	want	to	save	is	displayed	on	the
screen.	The	compressor	will	take	a	"snapshot"	of	the	screen	at	this	point	before
displaying	a	prompt	window.	You	are	then	given	the	opportunity	to	select	which
portion	of	the	screen	you	want	to	save.

SCNcom	can	work	on	the	whole	screen	or	any	smaller	sub-Section	of	the	screen:
you	select	the	appropriate	area	by	the	use	of	cursor	keys.	The	appropriate
directives	are:

1.	 <SHIFT>	&	<cursor>	-	to	change	the	size	of	the	'window'.

2.	 <cursor>	keys	only	-	to	change	the	position	of	the	'window'.

3.	 For	vertical	height	changes,	the	use	of	<CTRL>	&	<cursor>,	or	<CTRL>	&
<SHIFT>	&	<cursor>	as	appropriate,	will	alter	the	window	in	larger
increments.	Once	you	have	selected	the	required	window,	press	<ESC>	to
initiate	the	compression	process.	This	can	take	a	few	minutes	for	very
complicated	screens,	although	simpler	pictures	-	those	that	contain	large
areas	of	a	single	colour	or	stipple	-	will	be	processed	in	just	a	few	seconds.

After	it	has	completed	its	work,	SCNcom	will	ask	for	another	file	name	to	store
the	next	picture	in.	You	can	choose	to	stop	the	program	at	this	point,	if	the
current	picture	is	the	last	one	you	want	to	compress.	Once	the	compressed
picture	file	is	created,	you	can	use	it	in	either	of	two	ways.	Firstly,	it	can	be
incorporated	directly	by	GDI_2_task	into	a	composite	picture	file	for	your	ACT
adventure	games.

You	should	be	aware	that	pictures	made	in	this	way	cannot	re-scale	the	graphics
or	text	windows	in	ACT,	and	it	is	important	that	you	select	the	correct	size	of
screen	region	when	you	use	SCNcom	for	pictures	intended	for	ACT.	This	is
dealt	with	in	more	detail	in	Section	7.6.

You	can	also	restore	a	compressed	picture	directly	by	using	the	QREST	utility.
This	operates	as	a	procedure	from	SuperBASIC	and	will	restore	a	picture	file	by
typing	the	following	command:

				QREST	#n

where	"n"	must	be	a	SuperBASIC	channel	number	which	has	been	opened	to	a
file	containing	a	compressed	screen.	Once	you	have	opened	a	file	in	this	way,
you	can	re-issue	the	call	to	QREST	as	often	as	you	want;	there	is	no	need	to
close	and	then	re-open	the	channel	in	order	to	re-display	the	picture	data.

QREST	will	assume	a	default	channel	number	of	#3,	and	the	use	of	"#"
preceding	the	channel	number	is	optional.	SCNcom	needs	to	obtain	working
memory	when	it	is	first	run.	Assuming	it	finds	enough	(32K),	it	will	operate	as
described	above.	If	it	can't	find	this	much	memory,	it	will	still	operate,	but	with
some	differences	in	presentation	and	also	with	very	much	reduced	compression
performance.

The	main	difference	in	presentation	when	it	runs	with	insufficient	memory	is	that
you	are	not	able	to	adjust	the	compression	window	while	the	appropriate	picture
is	displayed.	Instead	this	must	be	done	at	the	same	time	as	the	output	file	is
specified.

We	recommend	that	you	should	always	try	to	use	the	utility	when	enough	free
memory	is	available	to	allow	it	to	work	properly.

Very	little	extra	memory	overhead	is	required	for	the	QREST	decompression

routine	(or	the	appropriate	routine	included	in	the	ACT	system).	This	should
work	well	even	when	nearly	all	the	free	memory	on	your	QL	is	being	used.

The	effective	improvement	in	storage	space	provided	by	SCNcom	will	be
reduced	if	small	windows	are	used.	It	is	even	possible	that	very	small	windows
may	actually	produce	larger	files	than	if	saved	by	conventional	means.	This	is
unlikely	to	be	the	case	for	"sensibly"	sized	portions	of	the	screen,	where	the	file
compression	factor	of	50%	or	better	should	still	apply.

Depending	on	the	complexity	of	a	window's	contents,	low,	wide	windows	are
likely	to	compress	more	efficiently	than	tall,	narrow	ones.	This	effect	will	be
most	noticeable	for	windows	less	than	about	1/20th	or	so	of	the	full	screen
width.

SCNcom	presents	very	few	limitations.	It	is,	however,	not	restricted	by	the
boundaries	of	the	picture	or	text	windows	when	used	with	an	ACT	adventure.

Any	alteration	of	the	window	boundaries	of	the	full-screen	picture	will	not	be
replaced	or	corrected	to	the	normal	black	PAPER	if	a	screen	prepared	with	this
utility	overwrites	the	area	surrounding	the	boundaries	of	the	text	and	normal
picture	windows.	Text	and	normal	illustration	windows	are	472	pixels	wide.	The
effect	described	would	be	produced	if	a	picture	filling	the	full	512	x	256	pixel
screen	were	used.

The	following	points	are	worth	stressing:

1.	 The	complexity	of	the	screen	will	affect	the	achievable	compression	ratio	as
well	as	the	time	taken	to	compress	the	screen.

2.	 Very	complex	screens	could	take	several	minutes	to	compute	the	most
efficient	compression.	The	compromise	we	have	taken	is	to	provide	a	utility
which	is	the	most	logical	for	a	user	of	an	ACT	game:	SCNcom	is	relatively
slow	in	saving	and	fast	in	loading.

3.	 In	order	to	provide	you	with	the	most	flexible	utility	possible,	we	have
ensured	that	you	retain	control	of	the	keyboard	at	all	times.	But	do	be
careful	not	to	alter	the	contents	of	the	screen	during	the	compression
process.

4.	 Decompression	time	is	not	especially	dependent	on	complexity,	although
large	areas	of	a	single	colour	(or	stipple)	will	reproduce	faster	than	the	more
complicated	areas	of	the	picture.

7.2.2	GDI_1_task,	the	ACT	/	Graphics	Designer	Interface

GDI_1_task	may	be	started	with	either	the	EXEC	or	the	EXEC_W	command.
The	notes	in	the	ACT	User	Guide	(Section	2.1.1)	explain	the	advantages	of	both
alternatives,	if	you	are	unsure.

In	operation,	GDI_1_task	reads	Graphics	Designer	Text/Coordinate	files	(saved
with	the	_txt	option,	the	first	SAVE	option	in	Graphics	Designer)	and	produces	a
MORE	compact	version	which	can	be	used	by	the	PIC1	utility	or	form	input
files	for	GDI_2_task	to	process	into	a	composite	ACT	picture	data	file.

To	simplify	the	specification	of	the	numerous	files	you	will	need	for	an
adventure	game,	GDI_1_task	allows	you	to	define	default	devices	for	both	input
and	output	files	as	well	as	default	name	extensions	that	it	will	automatically	add
to	each	input	and	output	file	name	you	specify.

When	the	program	is	first	started	these	defaults	are:

									Input	Device		=			flp2_

									Output	Device	=			flp2_

									Input	suffix		=			_txt

									Output	suffix	=			_APIC

and	you	are	given	the	opportunity	to	alter	these,	if	you	wish,	before	you	specify
the	first	file	for	processing.

If	you	chose	to	accept	the	'standard'	defaults,	and	you	specify	the	file	"Loc1"	for
"Input"	and	"Loc1"	for	"output",	the	actual	respective	file	names	used	by
GDI_1_task	would	be:

									Input	file		=	flp2_Loc1_txt

									Output	file	=	flp2_Loc1_APIC

In	this	way,	you	can	quickly	specify	each	file	you	need	to	process	with	a
minimum	of	typed	entry	to	the	program.

If	you	need	to	change	any	of	the	defaults	while	the	program	is	running,	this	is
accommodated	by	an	option	given	before	you	specify	each	new	input	file.

You	can	use	GDI_1_task	to	provide	some	control	over	how	a	picture	is	drawn	by
ACT.	For	each	picture	you	convert,	GDI_1_task	will	ask	two	questions	that
allow	you	to	"tailor"	the	picture	for	different	purposes.	The	first	of	these
questions	is	whether	the	previous	picture	should	be	erased	before	the	current	one
is	drawn.

This	is	controlled	with	the	use	of	Graphics	Designer's	WIPE	option.	All	pictures
produced	by	Graphics	Designer	start	by	setting	the	PAPER	to	black,	the	INK	to
white,	and	the	drawing	mode	to	"Normal".	A	WIPE	function	is	then	executed,
leaving	a	blank	screen	(as	you	normally	get	when	you	first	start	Graphics
Designer).	GDI_1_task	allows	this	initial	WIPE	to	be	removed	from	the	picture,
so	that	the	previous	picture	data	is	NOT	erased.

This	option	allows	pictures	to	be	built	up	from	separate	files	and	is	used	in	ACT
to	allow	"Objects"	to	be	drawn	on	top	of	"Locations".

You	would	normally	include	the	initial	wipe	for	a	Location	picture	but	exclude	it
for	Object	pictures.	Any	"null"	picture	(blank	screen)	that	you	want	to	include	in
your	game	should	retain	the	initial	"wipe".

This	option	is	not	available	with	the	PIC1	viewing/testing	utility,	which	will
always	clear	the	screen	prior	to	drawing	any	picture.

The	second	question	relates	to	the	repeating	fill	options	available	with	Graphics
Designer's	QFILL1	and	QFILL2	options,	both	of	which	provide	the	options	to
draw	pictures	in	which	a	picture	element	may	be	repeatedly	filled,	possibly	with
different	combinations	of	colours.

If	you	include	either	of	these	fills	in	a	drawing	for	ACT,	you	will	need	some	way
of	switching	off	the	fill	when	a	new	location	picture	is	drawn.	GDI_1_task	gives
you	the	option	to	stop	any	existing	fill	job	before	it	is	drawn.	Normally	this
should	be	done	along	lines	similar	to	the	"wipe"	option;	location	pictures	should
normally	be	arranged	to	stop	all	previous	repeating	fills,	whilst	objects	should
not	stop	them.

ACT	has	no	built-in	restrictions	regarding	the	possible	combinations	of
presentation	you	may	use,	but	choosing	among	the	many	options	available
should	be	done	with	care.

A	good	general	rule	to	follow	is	to	consider,	if	you	are	going	to	use	repeating
fills,	how	having	a	split-mode	screen	(detailed	later	on	in	this	Appendix)	as	well
will	affect	your	finished	product.

The	use	of	repeating	fills	can	have	a	delaying	effect	on	the	split-mode	feature
under	certain	conditions.	This	is	most	likely	to	occur	with	QFILL1's	repeating
fills	and	will	show	up	as	a	flickering	region	near	the	top	of	the	text	window	if	a
FILL	job	is	active	AND	the	split-mode	screen	is	in	use.

The	PIC1	utility	works	in	the	same	way	as	QREST	as	described	in	Section	2.1;	it
provides	the	fastest	way	of	re-producing	Graphics	Designer	drawings,	combined
with	the	smallest	possible	picture	storage	space.	Open	a	picture	file	(produced	by
GDI_1_task)	to	a	SuperBASIC	channel	and	use	the	command

		PIC1	#n

to	reproduce	the	picture.	In	the	same	way	as	QREST,	you	can	repeatedly	re-draw
the	same	picture	if	you	wish;	PIC1	will	use	the	same	default	channel	number	of
#3.

PIC1	supports	the	QFILL1	and	QFILL2	options.	If	one	of	these	is	used	in	a
picture	to	produce	a	repeating	fill,	you	can	also	use	PIC1	to	stop	the	fills	by
issuing	the	command:

		PIC1	-1

Note	that	this	will	only	work	on	fill	jobs	created	by	PIC1.	If	you	have	your
Graphics	Designer	extensions	loaded	and	have	used	either	QFILL1	or	QFILL2
directly	to	draw	a	repeating	fill,	then	either	of	these	may	be	stopped	only	by	the
appropriate	call	to	QFILL	1	or	2.	Conversely,	PIC1	cannot	itself	stop	a	fill	job
created	by	either	of	the	QFILL	routines	themselves.

You	can	also	stop	a	repeating	picture	drawn	by	PIC1	by	using	PIC1	to	draw
another	picture	which	has	been	prepared	with	the	option	to	stop	all	current	fill
jobs,	as	described	above.

7.2.3	GDI_2_task,	the	Picture	Compiler

This	program	works	in	a	way	similar	to	GDI_1_task.	It	allows	you	to	set	up
default	input	file	types	and	to	specify	the	default	input	device.	The	only
requirement	of	this	utility	is	that	you	must	sequentially	specify	each	file,
modified	by	either	the	GDI_1_task	(the	default	_APIC	type)	or	SCNcom
utilities,	which	you	wish	to	include	in	the	composite	picture	file.	Please	note:
SCNcom_task	format	files	will	not	alter	the	window	sizes	of	the	ACT	game,	and
you	should	be	careful	to	ensure	that	these	files	are	only	used	within	your	game
when	the	current	window	size	is	set	up	correctly.

The	required	sequence	for	compiling	your	pictures	is:

		Location	pictures	-	Starting	with	location	1.

		Object	pictures			-	Starting	with	object	0.

		BLANK_APIC								-	Required	by	the	system	programs.

		Extra	pictures				-	Such	as	Mini_Adventure's	"explosion".

You	can	include	as	many	extra	pictures	as	you	wish;	see	Section	7.5	for	more
details.

To	allow	the	large	composite	picture	files	to	be	produced	without	the	need	to
manually	specify	each	file	in	turn,	GDI_2_task	allows	all	files	that	are	to	be
incorporated	to	be	specified	by	a	suitable	'command'	file.	This	is	a	simple	list	of
file	names	(exactly	as	you	would	otherwise	input	them	to	the	utility	by	hand),
and	this	option	is	simply	selected	when	the	first	file	(or	any	subsequent	file)	is
specified.

You	can	prepare	a	'command'	file	using	any	suitable	text	editor.	QUILL	can	be
used,	for	example,	although	you	will	need	to	PRINT	the	data	to	a	file	in	order	to
produce	a	suitable	format.

Alternatively	you	can	use	MSGedt_task.	This	does	involve	the	restriction	that
you	can't	add	new	file	names	except	at	the	end	of	the	file.	If,	say,	you	add	a	new
location	to	your	game	as	you	develop	it,	if	you	have	also	added	the	object	file
names	to	your	command	file,	you	will	find	that	there	is	no	way	of	including	the
new	location	file	in	the	correct	place	between	the	current	last	'location'	filename
and	the	first	'object'	name.

The	way	round	this	is	to	use	three	command	files,	one	each	for	locations,	objects

and	extra	pictures.

These	three	command	files	can	then	be	specified	in	turn	to	the	GDI_2	utility,	and
in	this	way	all	of	the	files	specified	in	each	will	be	added	to	the	composite
picture	file	as	required.	However,	by	keeping	the	main	picture	categories
separate,	it	is	now	possible	for	MSGedt	to	add	new	locations/objects/extra
pictures	as	you	develop	your	game.

7.3	Extra	Graphics	Extensions

We	now	provide	more	detailed	information	about	the	graphics	machine-code
extensions	as	well	as	some	extra	tips	concerning	the	utility	programs.	The
LASTpic_dta	and	LASTpic_QFILL_dta	files	contain	a	set	of	eight	machine-
code	additions	that	provide	a	variety	of	new	facilities	for	the	ACT	system.

Since	the	two	system	program-merge	files	will	make	use	of	them	for	you,	adding
sophisticated	graphics	to	your	adventure	games,	there	is	no	special	requirement
for	an	in-depth	knowledge	about	how	they	work.	If	you	are	a	more	adventurous
user,	the	following	details	will	allow	you	to	make	use	of	these	additions	to	add
special	features	not	provided	by	the	supplied	modifications,	such	as	the	addition
of	extra	pictures	to	illustrate	novel	features	in	your	game.

The	eight	machine-code	routines	are	used	in	an	ACT	game	by	means	of	the
CALL	command.	The	use	of	this	is	detailed	in	the	ACT	User	Guide,	Section	3.5.
The	new	routines	are:

CALL	#1. ACTPIC_bin.	This	is	the	main	picture-drawing	routine;	it	contains
all	of	the	required	code	to	service	both	Graphics	Designer	and
SCNcom	Screen	Compressor	pictures.	Note	that	this	routine	is
different	in	the	non-QFILL	and	the	QFILL	version	of	the	file
(LASTpic_dta	and	LASTpic_QFILL_dta,	respectively).	The
exclusion	of	the	code	to	support	the	two	QFILL	functions	saves	over
3K	of	file	length.	A	typical	line	to	draw	picture	number	#n	might	be:
									LOAD_VAR	0,1	:	LOAD_VAR	1,#n	:	CALL	0,1

This	line	will	call	for	the	nth	picture	to	be	drawn.	The	return	value	in
the	call	parameter	(Variable	1,	in	this	example)	will	be	0	if	the
picture	was	found	and	successfully	drawn,	or	a	negative	number	if
there	was	some	error.	

CALL	#2. CLRPIC_bin	clears	the	picture	window.	The	value	in	the	call
parameter	is	not	used	and	will	not	be	altered.	There	is	a	small
difference	between	the	versions	of	this	routine	in	the	QFILL	and	non-
QFILL	versions	of	the	file.	

CALL	#3. CLRTXT_bin	clears	the	text	window	and	resets	the	freeze-screen
counter	to	zero.	The	value	of	the	call	parameter	is	not	used	and	will
not	be	altered.	

CALL	#4. HOLDPIC_bin	only	returns	to	the	program	after	a	key	is	pressed.
The	character	pressed	is	NOT	lost	but	will	be	subsequently	picked	up
by	the	ACT	pre-parser.	

For	this	reason,	it	is	better	for	the	game	to	prompt	players	with	the
instruction	to	"Press	F5	to	continue"	when	this	routine	is	used.	This
will	avoid	unwanted	characters	from	getting	into	the	parser,	which,
like	SuperBASIC,	will	ignore	non-printing	characters.	The	value	of
the	call	parameter	is	not	used	and	will	not	be	altered.	

CALL	#5. MODE4_bin	is	used	in	the	same	way	as	SuperBASIC's	command
MODE	4.	The	value	in	the	call	parameter	is	not	used	and	will	not	be
altered.	

CALL	#6. MODE8_bin	is	used	in	the	same	way	as	SuperBASIC's	command
MODE	8.	The	value	in	the	call	parameter	is	not	used	and	will	not	be
altered.	

CALL	#7. QMODE_bin	will	return	a	value	in	the	call	parameter	that	indicates
which	mode	the	computer	is	in.	The	value	will	be	0	for	MODE	4,	or
8	for	MODE	8.	

CALL	#8. SPLIT_bin	is	used	to	provide	the	dual-mode	screen	option.	The	value
in	the	call	parameter	is	used	to	select	one	of	four	different	functions:	

0	- This	will	switch	off	the	Split	Mode	feature.	This	must	be	done	before
the	game	stops,	since	otherwise,	if	the	split-mode	mode	feature	is	left
running,	the	computer	will	crash	as	soon	as	the	QL	makes	use	of	the
memory	that	the	game	occupied.

1	- switches	on	the	Split	Mode	feature.	The	screen	will	be	divided
between	the	picture	and	text	windows,	with	the	picture	in	MODE	8
and	the	text	in	MODE	4.	The	routine	will	automatically	adjust	the
switching	point	if	different-size	windows	are	used.	

Note	that	the	Split	Mode	feature	uses	up	a	lot	of	processor	time;	the
larger	the	picture	window,	the	slower	the	game	response	to	the
player's	commands.	

For	this	reason	we	do	not	recommend	the	use	of	Split	Mode	if	your
game	uses	pictures	larger	than	half-screen.	

2	- switches	the	computer	to	'pseudo'	mode	4.	This	is	a	software	change
only	and	doesn't	affect	the	screen	contents	or	the	QL	hardware	in	any
way.	

This	must	be	done	prior	to	the	output	of	any	text	(in	the	lower
window).	It	fools	the	QL	into	thinking	that	it	is	permanently	in	mode
4.

3	- switches	the	computer	to	'pseudo'	mode	8.	This	is	a	similar	function
to	'2'	(pseudo	mode	4)	but	is	used	prior	to	drawing	a	picture.

7.4	More	About	ACT's	Split-MODE	Screens

In	order	to	provide	you	with	the	maximum	flexibility	for	the	presentation	of	your
game,	we	have	left	a	number	of	options	open	to	you,	which,	if	all	are	used
simultaneously,	may	produce	unpredictable	results.

If	split	mode	and	the	QFILL	routines	are	used	at	the	same	time,	flickering	can
occur	at	the	top	of	the	text	window.

The	two	program-merge	files	mentioned	in	the	preceding	two	Sections	contain
the	required	code	to	support	the	screen's	Split-Mode	facility.	In	addition	a	switch
is	included	to	permit	the	feature	to	be	switched	ON	or	OFF	when	the	game	is
first	run.

The	control	of	this	is	achieved	through	the	spare	Location	0	parameter	number	2
bit	flags	2	to	4.	Bit	2	will	directly	control	the	operation	of	all	of	the	CALLs
(described	in	Section	1.7.3)	to	the	Split	routine;	the	flag	must	be	set	to	enable	the
CALLs.

Bits	3	and	4	are	used	by	the	new	routine	check_for_mode	in	the	player	program
and	tell	it	when	to	operate.	A	few	additional	lines	in	the	EVENT	program	are
also	involved.

You	can	use	the	program	startup	feature	as	it	stands,	or	permanently	enable	or
disable	the	split	feature	by:

1.	 editing	the	LOCN_dta	file	(with	the	LOCedt	utility)	to	set	Location	#0
parameter	#2	bit	#2	as	required;	and	

2.	 removing	the	following	lines	from	the	two	merge	files	before	using	them	to
create	their	new	PROG_dta	file.

								Player_Prog_Additions:	Delete	155,	156,	and	30620	to	30760.
								Event_Prog_Additions	:	Delete	1063	and	1064.

As	we	have	said	many	a	time	before,	you	should	be	aware	that	the	split	screen
puts	a	great	demand	on	processor	time.	The	use	of	half-screen	pictures
noticeably	delays	the	speed	of	the	Mini_Adventure	program.	This	time	penalty	is

increased	for	larger	pictures.	For	this	reason	the	use	of	pictures	larger	than	half-
screen	is	not	recommended.

The	Split	Screen	mode	available	with	ACT	relies	on	a	software	timer	that	is	set
up	to	switch	the	QL's	hardware	between	MODE	4	and	MODE	8	at	the	correct
point	in	each	screen-refresh	cycle.

This	timer-and-switching	function	is	set	up	as	a	polled	routine	within	the	QL	and
relies	on	being	started	at	the	correct	point	in	the	correct	screen	display	cycle,	so
that	the	mode	switch	is	in	the	desired	place	on	the	screen,	between	the	text	and
the	picture	windows.

This	normally	works	reliably,	provided	nothing	happens	to	delay	the	starting	of
the	polled	routine.	It	is	possible,	however,	for	certain	other	jobs	in	the	QL	to
delay	the	start	of	the	polled	routine.	In	particular,	the	use	of	microdrives	has	such
an	effect.	For	this	reason,	mode	switching	is	disabled	while	a	microdrive	is
running.

We	do	not	generally	recommend	the	use	of	repeating	fills	with	an	ACT
adventure	if	the	split-mode	screen	is	also	to	be	used.	If	you	wish	to	combine	both
of	these	features	in	your	game,	we	suggest	that	you	keep	the	JOB	priority	of	the
repeating	fills	(set	within	Graphics	Designer)	to	very	low	values	AND	have	no
more	than	one	or	two	such	fills	active	at	any	time.	If	you	are	planning	your	game
for	commercial	release,	we	suggest	that	you	make	some	comment	about	the
possibility	of	any	text-window	flicker	in	the	documentation	accompanying	your
game.

Certain	types	of	memory	expansion	can	cause	problems	when	using	split	modes
in	your	display.	This	problem	and	some	possible	cures	are	detailed	at	the	end	of
Section	1.7.3.

7.5	Making	Alterations

If	you	want	to	add	other	pictures	to	your	adventure,	you	should	add	them	to	the
composite	picture	file	after	the	BLANK_APIC	picture.	You	can	then	draw
additional	picture	number	#n,	using	a	line	in	the	player	or	event	program
something	like:

load_var	0,8	:	load_var	1,3	:	CALL	0,1	:
numb_obj	0	:	numb_loc	1	:	var_add	0,1	:	add	1,#n	:	load_var	0,1	:	CALL	0,1	:
load_var	0,8	:	load_var	1,2	:	CALL	0,1

This	looks	a	bit	complicated,	but	it	is	really	quite	simple.	The	first	three
commands	call	the	external	routine	number	8	(SPLIT_bin)	to	put	the	QL	into
'pseudo'	mode	8.	The	next	three	establish	how	many	Objects	and	Locations	there
are	in	the	game	and	put	the	total	into	Variable	1.

The	next	command	(add	1,#n)	modifies	this	total	to	point	to	the	required	picture.
It	skips	the	explosion	picture	which	is	contained	in	the	illustrated
Mini_Adventure;	this	would	be	equivalent	to	a	value	of	0	for	#n.

The	next	two	commands	CALL	the	first	external	routine	(ACTPIC_bin),	which
will	draw	the	appropriate	picture	number	as	contained	in	Variable	1.

Finally,	the	last	three	commands	re-call	external	routine	number	8	but	this	time
to	put	the	QL	back	to	'pseudo'	mode	4,	ready	for	any	subsequent	text	output.

If	you	remove	the	split-mode	option	from	your	game,	as	described	previously,
then	you	don't	need	any	of	the	commands	associated	with	the	pseudo	mode
changes;	it	won't	matter	if	they	are	included,	though.

7.6	Additional	Comments	on	Graphics	Designer	Pictures

ACT	will	correctly	re-produce	all	pictures	produced	by	Graphics	Designer;
however,	there	are	some	restrictions	that	you	should	be	aware	of.	ACT	will
accommodate	any	valid	picture	window	size.	Each	time	a	new	picture	is	drawn
by	ACT,	a	check	is	made	on	the	required	height.	If	it	is	the	same	as	the	last
picture	drawn,	ACT	will	proceed	to	draw	it	immediately.

If	the	height	is	different,	ACT	will	alter	the	window	size	of	both	the	picture	and
text	windows	to	suit.	When	this	happens,	BOTH	windows	will	be	cleared,	and	so
any	displayed	text	will	also	be	lost.	For	this	reason,	we	recommend	that	you	try
to	keep	changes	in	picture	size	to	a	minimum.

If	you	make	the	picture	window	too	big,	you	will	have	a	text	window	that	is	too
small	to	allow	any	text	to	be	output	by	ACT.	If	this	happens,	the	game	will	seem
to	"hang";	unless	you	have	toolkit	utilities	to	give	you	direct	job	control,	you
may	not	be	able	to	do	anything	besides	press	the	reset	button!

This	problem	can	occur	with	picture	windows	higher	than	220	pixels.	It	is
posible	to	use	pictures	up	to	the	maximum	of	230	if	you	wish;	just	be	sure	that
ACT	doesn't	try	to	output	any	text	while	a	picture	of	this	size	is	displayed.	The
Mini_Adventure	title	screen	is	an	example	of	a	large	picture	which	won't	cause
the	QL	to	hang	up.

Making	a	"NULL"	picture	with	Graphic	Designer	is	simply	a	matter	of	selecting
the	correct	screen	size	and	then	SAVE	the	blank	Graphics	Designer	screen	as	a
file,	selecting	the	"txt"	option.

When	objects	are	added	to	a	picture,	remember	that	they	might	be	drawn	in	front
of	some	feature	in	the	background,	depending	on	which	location	picture	they
happen	to	be	drawn	with	at	any	time.

For	this	reason,	be	careful	about	using	the	Complementary	Colours	option
available	with	Graphics	Designer.	If	parts	of	an	object	are	drawn	using	this
option,	you	will	'see'	any	background	details	through	the	object	when	it	is	drawn.
This	option	can	be	useful	for	"ghosting"	effects.

You	might	also	bear	in	mind	the	order	in	which	objects	will	be	drawn.	Whenever
the	player	drops	an	object	that	is	currently	carried,	this	is	added	to	the	current
picture	contents.	When	a	new	location	is	drawn,	either	as	a	result	of	the	LOOK
command	or	when	moving	about	the	adventure,	the	objects	are	added	to	the
picture	in	reverse	numerical	order.

Two	features	available	within	Graphics	Designer	which	cannot	be	used	within
the	ACT	system	are	GRID	and	the	delay	(HOLD).	If	a	drawing	is	produced
using	either	of	these	options,	when	the	pictures	are	converted	by	the	GDI_1_task
utilitiy,	the	internal	file	commands	calling	for	these	functions	will	be	ignored.

7.7	Additional	Information

Before	preparing	your	drawings	for	an	ACT	adventure,	it	is	a	good	idea	to	make
up	a	"story	board"	for	the	game	plan	and	required	illustrations.	Having	a
specification	to	work	from	will	save	considerable	time	and	result	in	a	more
compact	game.

You	should	remember	that	prior	to	making	drawings	it	is	good	practice	to	pre-
plan	your	drawing	requirements	on	paper.	Frequent	changes	of	INK	or	PAPER
will	increase	the	size	of	the	drawing	file.	Wherever	possible,	elements	of	the
same	INK	or	PAPER	should	be	made	together.

As	stressed	from	the	beginning	of	the	ACT	User	Guide,	you	should	plan
carefully	before	either	altering	the	Mini_Adventure	or	starting	a	completely	new
game	of	your	own.

You	should	NOT	try	to	remove	any	of	the	eight	machine-code	additions
contained	in	either	LASTpic_dta	or	LASTpic_QFILL_dta,	unless	you	are	careful
to	check	that	all	references	to	the	removed	routines	are	also	deleted	from	both
the	system	programs.	Failure	to	observe	this	precaution	may	produce
unpredictable	results.

Keep	in	mind	that	when	LSTedt	removes	a	machine-code	addition	from	the	data
file,	all	subsequent	routines	are	re-numbered.	In	practical	terms	this	means	that	if
you	remove	routine	#3	(CLRTXT_bin),	ALL	references	to	routine	numbers	4	to
8	would	have	to	be	renumbered	(#3	to	#7).

We	recommend	that	none	of	the	eight	graphics	routines	be	removed.	You	can
add	any	of	your	own	routines	onto	the	end	of	the	eight	graphics	ones	(i.e.
starting	with	CALL	routine	number	#9).

Most	of	the	graphics	routines	are	quite	short	(except	for	the	first,	ACTPIC_bin).
Many	of	these,	such	as	CLRTXT_bin,	MODE4_bin,	MODE8_bin,	and
QMODE_bin,	may	be	used	in	a	text-only	game.	In	this	case	you	could	remove
the	unwanted	routines	from	the	system	and	leave	only	the	ones	required.	If	this
is	done,	we	recommend	that	you	DO	NOT	use	the	two	supplied	merge	files	but
write	your	own	additions	to	the	original	programs.

8.0	APPENDIX	3	-	ADDING	SOUNDS	AND	FONTS

If	you	are	anything	like	me,	you	will	never	read	documentation	associated	with
computer	software.	Instead,	you	will	immediately	load	each	new	program	you
get	into	your	computer	and	expect	to	understand	how	to	run	it	without	ever
needing	to	turn	the	pages	of	the	user	guide.

Well,	provided	you	know	a	bit	about	the	ACT	system,	you	can	probably	get
away	with	using	SNDedt	without	ever	reading	beyond	the	first	line	of	these
notes.

If	you	need	a	little	bit	of	help	with	actually	putting	your	sound	effects	into	an
adventure	game,	you	will	probably	need	to	glance	at	Section	8.7	of	these	notes.
Hopefully	the	experience	won't	be	too	painful.

If,	however,	you	are	either	one	of	those	rare	people	who	always	read	software
documentation	thoroughly	(well	done,	do	keep	it	up!)	before	ever	attempting	to
use	the	program,	or	you	simply	can't	figure	out	how	to	use	SNDedt,	then	I'm
afraid	you	will	have	no	option	except	to	read	the	boring	blurb	that	follows.
Hopefully	that	experience	won't	permanently	damage	your	health!

8.1	What	Is	SNDedt?

SNDedt	is	an	extra	utility	for	the	ACT	system	that	allows	sound	effects	to	be
added	to	any	adventure	game	produced.	The	basic	philosophy	that	SNDedt	has
been	designed	with	is	that	ANY	sound	you	can	construct,	using	the	SuperBASIC
BEEP	command,	can	also	be	incorporated	into	your	game.	In	addition,	SNDedt
also	allows	multiple	BEEP's	to	be	combined,	along	with	short	pauses	if	required,
and	the	resulting	composite	sound	can	be	simply	called	by	the	game	as	though	it
were	a	single	sound.

In	order	to	maintain	similarity	with	the	Superbasic	BEEP,	SNDedt	uses	a	similar
set	of	parameters	to	characterise	each	sound.	All	of	the	sounds	that	are	to	be	used
in	a	game	-	up	to	999	are	allowed	-	are	simply	displayed	in	SNDedt's	editing
window.	Changes	to	the	sounds	are	made	by	the	use	of	the	QL's	cursor	keys	to
select	or	modify	parameters,	and	sounds	may	be	heard	at	any	time,	so	that	the
effect	of	a	change	is	immediately	apparent.

To	further	simplify	the	task	of	creating	the	sounds	you	require,	SNDedt	can
provide	a	page	of	text	'on	line',	which	describes	each	parameter	that	controls
how	a	given	'noise'	sounds.

8.2	How	Are	Sounds	Incorporated	into	an	ACT	Game?

While	you	are	developing	the	sounds	for	a	game,	you	can	write	and	read	the
current	repertoire	to	a	storage	file.	When	you	have	completed	all	the	sounds	you
want	to	include,	you	simply	select	a	different	output	option	from	the	SNDedt
menu,	which	produces	a	module	in	the	format	required	by	the	ACT	LSTedt
utility.	It	is	this	module	that	is	actually	incorporated	into	your	adventure	game.

The	module	contains	the	information	required	to	reproduce	all	of	the	sounds
created	by	the	SNDedt	utility,	along	with	a	short	Section	of	machine	code	that
allows	the	ACT	system	to	actually	create	the	sounds.

Once	this	module	is	added	to	the	ACT	last	data	file	by	the	LSTedt	program,	the
sounds	can	be	simply	produced	in	the	adventure	game	by	using	the	ACTBASIC
'CALL'	command.	Only	three	ACTBASIC	commands	are	needed	to	call	a
sound,	and	if	a	suitable	'subroutine'	is	'NAMEd'	in	either	the	PLAYER	or
EVENT	programs	to	call	a	particular	sound,	then	only	3	bytes	of	space	are	taken
up	for	each	situation,	or	place	in	the	programs	where	your	game	is	to	make	a
particular	noise.

8.3	Starting	SNDedt

Like	all	the	other	ACT	utilities,	SNDedt	is	designed	to	run	as	a	separate	job	on
your	QL.	To	start	it,	use	either	the	SuperBASIC	EXEC_W	or	the	EXEC
command.	If	you	are	not	familiar	with	running	programs	in	this	way,	you	should
consult	the	ACT	user	guide.	Section	2.2.1	describes	both	of	these	commands	and
their	different	advantages.

SNDedt	uses	quite	a	large	amount	of	memory.	If	you	don't	have	any	extra	RAM
on	your	QL,	then	you	might	well	find	that	you	are	unable	to	get	SNDedt	to	run	if
you	are	also	running	other	programs	at	the	same	time	or	if	you	have	a	large
SuperBASIC	program	loaded.	In	this	case	you	should	RESET	your	QL	and	try
again,	remembering	to	remove	any	microdrives	while	you	press	the	reset	button!

If	you	start	SNDedt	using	the	EXEC	command,	you	might	have	to	use	the
CONTROL	'C'	switch	in	order	to	get	the	program's	cursor	flashing.	The	relevant
cursor	is	located	on	the	left-hand	side	of	the	title	window,	at	the	top	of	the
screen.

8.4	Finding	Your	Way	Around	the	SNDedt	Screen

There	are	four	main	'window'	areas	presented	on	the	screen,	once	SNDedt	has
started.	The	top	of	the	screen	is	used	for	the	program	title	window.	Apart	from
the	input	cursor,	as	mentioned	in	Section	3,	this	window	also	contains	the
version	number	of	SNDEDT.

The	right-hand	side	of	the	screen	is	used	to	display	a	menu	of	commands	or	help
text	describing	each	of	the	parameters	associated	with	the	sounds.	The	program
will	start	with	the	commands	menu	displayed,	but	you	can	select	between	this
and	the	help	text	by	pressing	the	'H'	key,	as	indicated	in	the	menu.	If	the	help	text
is	selected,	the	appropriate	text	for	the	parameter	currently	selected	in	the	main
editing	window	will	be	displayed.

To	the	left	of	the	screen	is	the	main	editing	window.	SNDedt	can	have	up	to	999
sounds	defined,	but	the	window	is	not	large	enough	to	display	more	than	10	at	a
time,	so	if	there	are	more	sounds	than	will	fit	into	the	window	then	the	program
will	simply	display	a	Section	of	the	data.	The	actual	sounds	displayed	may	be
selected	either	by	the	use	of	the	up	or	down	cursor	keys,	in	order	to	browse	up	or
down	through	the	sounds	data	set,	or	by	the	use	of	three	selecting	'commands'	as
described	in	Section	8.6.	The	currently	selected	sound	and	parameter	is	indicated
by	a	colour	change	on	the	screen;	you	can	select	different	parameters	by	the	use
of	the	left	or	right	cursor	keys.

The	region	at	the	bottom	of	the	screen	is	used	for	prompts	and	extra	information
that	might	be	required.	Such	use	will	only	occur	when	certain	options	are
requested,	such	as	to	read	or	write	a	data	file.

8.5	How	To	Use	the	Editing	Window

The	data	in	the	editing	window	consists	of	individual	rows	of	10	numbers,	each
such	row	defining	a	single	'sound'.	The	first	of	the	parameters	is	simply	the
sound	number.	This	will	be	in	the	range	1	to	999,	and	the	numbering	of	the
sounds	will	always	be	sequential.

Parameters	2	to	9	actually	define	the	sound.	These	numbers	are	the	same	as	the	8
parameters	that	the	SuperBASIC	BEEP	command	uses.	If	you	want	more
information	about	them,	you	can	consult	the	QL	User	Guide,	or	you	can	read	the
SNDedt	help	text	for	each	one.

With	the	SuperBASIC	BEEP	command,	the	first	parameter,	the	duration	of	the
BEEP,	can	be	in	the	range	0	to	32767.	A	value	of	0	indicates	that	the	sound	is	to
last	indefinitely.	With	SNDedt,	a	value	of	0	isn't	allowed,	since	this	would	lead
to	a	sound	that	would	effectively	'hang	up'	the	adventure	game,	control	only
being	passed	back	to	the	ACT	system	once	a	sound	has	stopped.	Although	a	zero
duration	value	is	not	allowed	with	SNDedt,	the	appropriate	parameter	can	have
negative	numbers.	These	are	used	to	select	a	pause	of	the	length	a	'sound'	with
the	same	positive	number	would	have.	If	a	pause	is	defined,	the	other	BEEP
parameters,	3	to	9	in	the	SNDedt	window,	do	not	have	any	effect.

The	last	parameter,	for	either	sounds	or	pauses,	is	used	to	select	what	happens
once	the	current	sound	has	stopped.	A	value	of	0	indicates	that	this	is	the	end	of
the	process:	once	the	sound	has	finished,	control	is	passed	back	to	the	adventure
game.	If	this	parameter	is	greater	than	0,	then	at	the	end	of	the	current	sound	a
new	sound	will	be	started,	as	indicated	by	the	actual	value	of	the	parameter.

When	SNDedt	is	first	started,	there	will	not	be	any	defined	sounds.	In	this
situation,	or	whenever	the	last	defined	sound	is	actually	displayed	in	the	editing
window,	SNDedt	will	display	an	extra	line	in	white	strip.	This	is	the	'next
available	sound'	slot;	you	will	find	that	this	is	sound	number	1	when	the	program
is	started.

In	addition,	if	either	the	first	or	the	last	sound	defined	is	currently	displayed	in
the	window,	SNDedt	will	display	a	special	line	in	green	strip,	indicating	that	this
is	the	current	top	or	bottom	of	the	data	set.

To	change	the	value	of	a	parameter,	use	the	SHIFT	up	or	SHIFT	down	cursor
keys	to	increase	or	decrease	the	number.	As	soon	as	any	parameter	is	changed	in
the	'next	available	sound',	SNDedt	will	add	this	to	the	data	set	as	a	'defined
sound'.	When	this	happens,	the	sound	will	be	displayed	normally,	that	is	with
black	strip,	and	a	new	'next	available	sound'	will	be	added	in	the	next	slot.	Once
a	sound	has	been	defined,	you	cannot	remove	it,	although	you	can	Zap	the	entire
sound	table	if	you	want,	or	you	can	re-read	the	data,	if	it	was	previously	stored	in
a	file.

If	parameter	10	of	a	sound	is	not	0,	indicating	that	this	sound	links	on	to	some
other	sound	once	it	has	finished,	then	SNDedt	will	display	the	sound	in	green
strip.	In	this	way	it	is	easy	to	see	which	sounds	in	a	data	set	form	part	of	a
multiple	set	of	sounds,	since	only	sounds	with	black	strip	actually	stop	the
BEEPing	process.

When	changing	the	value	of	a	sound,	using	the	SHIFT	up	or	down	keys,	you	can
alter	the	values	over	a	large	range	quickly	by	holding	either	of	the	SHIFT	cursor
keys	down.	When	this	is	done,	SNDedt	will,	after	a	few	moments,	start	a	more
rapid	alteration	of	the	value	than	you	obtain	by	single	keypresses.

8.6	SNDedt	Commands

Cursor	keys. These	are	used	to	select	the	'current	sound'	and	also	the	'current
parameter'.	The	current	parameter	in	the	current	sound	is
indicated	by	having	red	strip,	as	opposed	to	black,	green	or	white.

SHIFT	up	or
down	cursor.	

These	are	used	to	alter	the	value	of	the	current	parameter	in	the
current	sound.	Values	can	only	be	altered	within	the	valid	range
for	each.	The	help	text,	available	for	each	parameter,	describes
what	each	one	does,	as	well	as	the	allowed	range	of	values.	

SPACE. This	will	cause	SNDedt	to	output	the	current	sound.	The	current
parameter	position	is	not	important;	only	the	current	sound	is
output,	even	if	parameter	10	indicates	that	another	sound	will
normally	follow.	This	option	allows	individual	sounds	in	a
sequence	to	be	heard	on	their	own.	

ENTER. This	will	cause	the	sound	sequence,	starting	with	the	current
sound,	to	be	output.	This	allows	a	composite	set	of	BEEPs	to	be
heard,	exactly	as	they	will	be	produced	by	the	ACT	system,	once
the	machine-code	module	is	dumped	by	SNDedt	and	installed
into	an	adventure	game	by	the	LSTedt	utility.	

To	help	keep	track	of	which	sounds	are	involved	in	a	series	as
each	sound	is	output,	the	appropriate	entry	in	the	editing	window
is	indicated	by	a	marker	to	the	left	of	the	first	parameter	column.
Obviously,	if	the	sounds	link	to	a	number	not	actually	displayed
within	the	window,	no	marker	can	be	displayed	for	each	such
sound.	

Zap. This	is	selected	by	pressing	the	'Z'	key	and	will	cause	all	sounds
to	be	deleted	from	the	current	list,	leaving	the	program	in	the
start-up	state,	i.e.	with	no	sounds	defined.	

Write. Selected	by	pressing	the	'W'	key.	This	will	write	currently	defined
sounds	to	a	file.	You	will	be	prompted	for	the	required	file	device
and	name.	The	default	uses	the	extension	'_dta'	on	the	file	name,

and	it	is	suggested	that	you	continue	to	use	this	convention	in
order	to	differentiate	the	program	'save'	files	from	the	machine-
code	module	output.	

Read. Selected	by	pressing	the	'R'	key.	This	is	the	opposite	of	the	Write
option.	It	is	used	to	read	the	sounds	back	in	from	a	previous	write.

Go	to. Selected	by	pressing	the	'G'	key.	This	alters	the	current	sound	to
any	value.	You	will	be	prompted	for	the	sound	number	you	want
to	'go	to'.	This	is	of	most	use	when	you	have	many	sounds
defined:	it	may	then	be	much	quicker	than	scrolling	through	the
data	set	using	the	up	or	down	cursor	keys.	

Top. Selected	by	pressing	the	'T'	key.	This	selects	sound	number	1	as
the	current	sound.	

Bottom. Selected	by	pressing	the	'B'	key.	This	selects	the	last	defined
sound	as	the	current	sound.	

Quit. Selected	by	pressing	the	'Q'	key.	As	you	would	expect,	this	stops
the	SNDedt	program.	

Dump. Selected	by	pressing	the	'D'	key.	This	is	used	to	write	out	the
currently	defined	set	of	sounds	as	a	machine-code	module
suitable	for	the	ACT	utility	LSTedt	to	incorporate	into	your
adventure	game.	Note	that	such	a	dumped	module	can't	be	read
back	into	SNDedt,	only	the	program	'save'	files	being	suitable	for
reading	by	the	Read	command.	The	default	'dump'	file	name	is
given	the	extension	'_bin',	and	as	for	the	'read'	file	extension,	it	is
suggested	that	you	maintain	this	simple	extension	convention	in
order	to	identify	which	of	your	data	files	are	machine-code
modules.	

Section	8.7	explains	how	you	can	incorporate	the	machine-code
module	into	your	adventure	game	and	how	to	add	calls	to	the
sounds	you	have	constructed	in	either	the	PLAYER	or	EVENT
programs.	

New. Selected	by	pressing	the	'N'	key.	This	simply	re-draws	the	entire
SNDedt	screen.	The	main	use	is	if	you	are	running	SNDedt	along
with	other	programs:	if	another	job	changes	the	screen,	you	can
simply	use	the	New	option	to	remove	the	corruptions.	

Help. Selected	by	pressing	the	'H'	key.	This	simply	toggles	the
help/information	window	between	a	summary	of	these	commands
and	the	parameter	help	information.

8.7	Loading	the	Machine-Code	Module	into	a	Game	and
CALLing	the	Sounds

8.7.1	Adding	the	Sounds	Module	to	the	ACT	Last	Data	File

Once	you	have	completed	all	the	sounds	you	want	to	incorporate	into	your	game,
you	should	use	the	Dump	option	in	SNDedt	to	create	a	machine-code	module.
This	module	must	be	combined	with	the	ACT	last	data	file	in	order	to	make	use
of	the	sounds	in	your	game.

The	last	data	file	is	called	LAST_dta	in	the	basic	(text-only)	ACT	system,	or
either	LASTpic_dta	or	LASTpic_QFILL_dta	if	you	have	added	the	optional
Graphics	interface	kit.	This	file	contains	some	extra	information	required	by	the
ACT	linker	when	it	combines	the	other	data	files	to	form	a	completed	game.	In
addition	it	can	also	have	up	to	255	machine-code	modules	incorporated,	which
may	be	executed	by	the	use	of	the	ACTBASIC	'CALL'	command	from	either	the
PLAYER	or	the	EVENT	program.

In	the	basic	ACT	system,	i.e.	the	LAST_dta	file,	there	are	no	machine-code
modules	included,	while	either	of	the	appropriate	files	in	the	Graphics	interface
kit	has	8	machine-code	modules	included	already.	To	add	your	sound	module,
you	simply	run	the	LSTedt	utility	in	the	same	way	as	all	the	other	ACT	utility
programs	are	run,	and	then,	after	reading	in	the	appropriate	ACT	last	data	file,
select	to	alter	option	'2',	the	number	of	machine-code	modules.

This	done,	you	will	be	presented	with	a	list	of	several	options.	You	should
choose	'A',	to	add	a	new	module	to	the	file.	Simply	specify	the	sound	'Dump'
module	that	you	have	created	with	SNDedt,	and	LSTedt	will	read	the	data	into
the	file.

You	will	notice	that	you	can	also	use	LSTedt	to	remove	a	module	if	you	want.
This	option	allows	you	to	modify	your	sound	module	after	you	have	added	extra
sounds,	say.	The	procedure	is	to	remove	the	old	copy	and	then	add	the	new	one
in	its	place.	When	removing	a	module,	you	must	be	careful.	It	is	possible	to
remove	any	of	the	modules	currently	loaded,	but	if	you	remove	one	of	the	other
modules	already	installed,	the	only	way	to	re-establish	it	is	to	re-start	from	a
backup	copy	of	the	last	data	file.	You	should	be	aware	that	you	can	ONLY	add

new	machine-code	modules	to	the	end	of	the	modules	already	installed;	LSTedt
doesn't	allow	you	to	insert	a	module	in	between	existing	ones.	This	restriction	is
deliberately	included	in	the	ACT	system	in	order	to	avoid	number	changes	for
existing	modules,	which	would	require	a	similar	change	to	any	call	to	such
modules	from	the	ACTBASIC	programs.

When	you	install	your	sound	module,	make	a	note	of	the	module	number,	as	you
will	need	it	to	make	calls	to	the	sounds	from	the	ACTBASIC	programs.	For	the
basic	ACT	file	LAST_dta,	the	sound	module	will	be	number	1,	while	for	either
of	the	Graphics	interface	kit	alternative	last	data	files	there	are	already	8	modules
loaded,	so	that	for	them	the	sound	module	will	be	number	9.	Of	course,	if	you
have	added	modules	of	your	own	or	removed	modules	from	the	Graphics	files,
these	numbers	will	be	different.	In	this	case	LSTedt	will	tell	you	which	number	it
has	added	the	sound	module	as.

The	sound	module	is	quite	short.	It	will	add	132	bytes	to	the	length	of	your
game,	plus	10	for	each	sound	defined.

8.7.2	CALLing	the	Sounds	from	ACTBASIC	Programs

In	order	to	produce	the	sounds	in	your	game,	it	only	remains	to	add	calls	to	the
appropriate	sound	module	by	using	the	ACTBASIC	'CALL'	command.	This
command	is	described	in	the	ACT	user	guide,	Section	3.2.3.	As	an	example,
suppose	your	sounds	have	been	installed	as	module	number	9	by	the	LSTedt
utility.	In	this	case	the	following	three	ACTBASIC	commands	will	cause	sound
number	15,	within	the	module,	to	be	produced	by	the	game.

LOAD_VAR	0,9	:	LOAD_VAR	1,15	:	CALL	0,1

More	generally,	the	call	to	the	sound	module	should	be

LOAD_VAR	0,#n	:	LOAD_VAR	1,#m	:	CALL	0,1

where	#n	is	the	appropriate	module	number	of	the	sounds,	and	#m	is	the	required
sound	number.	Obviously,	any	of	the	ACT	system	variables	can	be	used	for	the
call.	For	example,	if	variables	0	and	1	are	being	used	for	some	other	purpose	at
some	point	in	the	program	where	sound	output	is	required,	you	should	substitute
some	other	variables.	One	simple	way	to	avoid	any	possibility	of	changing	the

values	of	variables	which	need	to	be	preserved	is	to	allocate	two	extra	variables
for	the	exclusive	use	of	the	sound	module.

As	explained	in	the	ACT	User	Guide,	up	to	256	variables	may	be	used	in	a
game,	and	the	mini	adventure	demonstration	game	only	uses	17,	i.e.	variables	0
to	16.

To	allocate	extra	variables,	simply	alter	the	appropriate	option	in	the	ACT	last
data	file,	by	using	the	LSTedt	utility.	You	could	actually	do	this	at	the	same	time
as	you	add	your	sound	module,	if	you	want.	If	you	do	allocate	extra	variables	in
this	way,	you	could	make	NAMEd	subroutine	calls	to	each	of	the	sounds	in	the
module	in	order	to	simplify	the	process	of	inserting	the	sounds	into	the	logic	of
your	game.

To	do	this,	you	might	use	the	following	example	code	lines.	They	can	be	added
to	either	the	PLAYER	or	the	EVENT	program,	and	the	subroutines	will	be
executable	from	BOTH	programs,	no	matter	which	they	are	actually	defined	in.

32000	NAME	sound_1:LOAD_VAR	17,#n:LOAD_VAR	18,#m:CALL
17,18:RETurn
32002	NAME	sound_2:LOAD_VAR	17,#n:LOAD_VAR	18,#v:CALL
17,18:RETurn

Here	sound_1	will	call	sound	number	#m	from	your	sound	module,	while
sound_2	will	call	number	#v.	You	can	obviously	make	the	actual	names	of	the
subroutines	a	bit	more	descriptive	than	in	this	example.	Here	it	is	assumed	that
variables	17	and	18	are	assigned	to	the	sound	module;	if	you	are	already	using
these	in	your	programs,	you	should	obviously	substitute	suitable	alternative
values.

Once	your	sounds	are	defined	in	this	way,	you	can	call	them	by	simply	referring
to	the	appropriate	subroutine	name	whenever	you	want	a	sound	to	be	output	by
the	game.	For	example,	look	at	line	2720	of	the	distributed	version	of	the
PLAYER	program.	This	line	is:

2720	print_score	:	STOP,

and	is	executed	whenever	the	command	'SCORE'	is	entered	to	the	game.	If	you

insert	a	call	to	sound_1,

2720	print_score	:	sound_1	:	STOP,

the	game	will	also	output	the	appropriate	sound	whenever	it	responds	to	a
request	for	the	current	'score'	by	the	player.

Clearly	there	are	lots	of	places	in	the	distributed	programs	where	you	might	add
sounds.	You	will	also	probably	want	to	add	sounds	to	some	of	your	own
additions	to	the	game	programs.	No	matter	where	you	decide	to	add	sound
effects,	the	principle	is	the	same.	Once	you	have	defined	the	sound	subroutines,
each	call	to	a	sound	only	uses	up	3	bytes	of	extra	space	in	your	game.	In	this
way	it	is	possible	to	add	many	sounds	to	your	game	while	only	adding	a	few
hundred	bytes	to	the	length	of	the	game.

8.8	The	Sounds	Used	in	IMAGINE

You	will	find	an	example	SNDedt	sound	'save'	file	included	with	your	copy	of
the	utility.	This	file	has	the	default	SNDedt	load	name	of	'SNDedt_dta';	so	to
read	it	in,	simply	select	the	Load	command	and	press	ENTER	when	the	program
prompts	for	a	file	name.

There	are	31	separate	sounds	defined	in	this	data	file,	although	several	are	linked
into	multiple	BEEPs.	This	set	of	data	in	fact	constitutes	the	sounds	used	in
IMAGINE.

The	following	list	describes	the	16	separate	'composite'	sounds	defined	in	this
file,	along	with	a	short	description	of	what	each	is	used	for	in	IMAGINE.	You
are	welcome	to	use	this	data	set	as	a	starting	point	for	the	sounds	to	be	included
in	your	own	games,	if	you	want.

Sound	number	 Description
1 A	short	tune.	This	is	used	when	the	player	gets	a	point,	as	well

as	when	the	game	first	starts.
12 This	is	used	whenever	the	player	is	killed.
14 Re-incarnation.
15 Jumping,	wherever	there	is	a	route	down.
16 Jumping,	this	time	where	there	isn't	a	path	down.
17 Player's	a	dummy.	Used	frequently,	whenever	a	command	is	not

successful.
20 Explosion.
21 Done.	Used	frequently,	whenever	a	command	is	successful.
22 The	phantom's	arrival.
24 The	mouse.
25 Electric	shock,	caused	by	touching	the	stripe	in	the	VAST	room.
26 Nagging.
27 A	special	sound,	reserved	for	a	special	situation	involving	the

wife.
29 Touching	the	cube.
30 The	alarm,	in	the	perplexing	room.

31 Effect	whenever	a	'magic'	transportation	word	is	used
successfully.

8.9	Adding	Fonts

If	you	want	to	incorporate	alternative	character	fonts	into	your	completed	game,
such	as	that	used	in	IMAGINE	for	example,	then	you	can	use	the	simple
program	ACTfont_bas.

This	program,	which	is	supplied	as	SuperBASIC,	should	be	LRUN	in	the	normal
way.	It	will	prompt	for	the	name	of	a	data	file	that	contains	the	font	you	wish	to
use	in	your	game,	this	should	be	in	the	standard	QL	format.	You	can	either	use
your	own	fonts,	or	alternatively	you	can	use	any	of	the	numerous	fonts	available
from	various	sources.	Although	not	primarilly	intended	as	a	source	of	QL	fonts
the	accelerator	program,	LIGHTNING,	also	available	from	Digital	Precision,
contains	perhaps	the	most	varied	collection	of	alternative	fonts	currently
available	for	the	QL.	Indeed,	one	of	the	fonts	supplied	with	LIGHTNING	is	used
in	IMAGINE.

The	output	from	ACTfont_bas	is	a	machine	code	module	which	should	be
installed	into	the	LAST_dta	(or	LASTpic_dta	or	LASTpic_QFILL_dta	as
appropriate)	file	prior	to	using	LINKER_task	to	form	an	ACT	game.	The
LSTedt_task	utility	is	used	to	add	machine	code	additions	to	the	LAST_dta	file,
for	more	information	on	using	this	you	should	consult	the	relevant	parts	of	the
manual,	in	addition	the	Section	on	SNDedt_task	also	gives	specific	details	about
how	to	incorporate	an	extra	machine	code	module.

It	is	also	necessary	to	add	a	specific	CALL	to	the	FONT	module	in	the
EVENT_prog	source	file.	The	required	addition	is

LOAD_VAR	0,1	:	CALL	0,1	 appended	to	the	END	of	line	1070	in	the
EVENT	program	if	you	are	using	the	text-only
form	of	the	system	programs.	This	also	assumes
that	the	font	module	produced	by	ACTfont_bas
is	incorporated	as	the	FIRST	module	in	the
LAST_dta	file.	

LOAD_VAR	2,N	:	CALL	2,N		 this	should	be	inserted	AT	THE	BEGINNING
of	the	existing	line	1063	if	you	are	using	the
illustrated	version	of	the	system	programs,	that

is	is	the	two	_additions	files	have	been
MERGEd	with	PLAYER_prog	and
EVENT_prog.	Note	that	the	'N'	represents	a
number,	this	being	the	relevent	number	that	the
font	module	is	loaded	as	by	the	LSTedt_task
utility.	N	will	most	probably	be	9,	although	it
might	be	a	larger	number	than	this	if	you	have
also	included	other	machine	code	additions.	In
any	case	LSTedt_task	will	always	tell	you	the
appropriate	number	whenever	it	installs	a	new
module	into	any	of	the	LAST_dta	files.

9.0	APPENDIX	4	-	QFILL1	AND	QFILL2

QFILL1	and	QFILL2	are	two	machine-code	extensions	that	enhance	the	simple
area-filling	facilities	of	the	QL	and	also	allow	simple	'animated'	filling	effects.
The	routines	are	both	incorporated	in	Graphics	Designer;	in	addition,	each	may
also	be	used	independently	from	SuperBASIC	as	well	as	under	the	ACT
graphics	system.

QFILL1	is	an	advanced	shape-drawing	routine.	It	can	be	used	as	an	alternative	to
the	native	QL	'FILL'	whenever	an	irregular	shape	made	up	of	a	sequence	of
DRAWn	lines	is	required	filled,	rather	than	as	a	simple	'outline'.	The	main
improvement	offered	by	QFILL1	is	that	it	allows	re-entrant	shapes	of	any
complexity;	it	will	even	cope	with	shapes	that	have	interSect_ing	boundary	lines.
This	allows	it	to	draw	shapes	of	any	form.	By	the	careful	choice	of	outline	it	is
possible	to	use	a	single	call	to	QFILL1	that	will	produce	such	shapes	as	a	'star',	a
'spiral'	or	even	solid	shapes,	such	as	a	box	for	example,	but	with	embedded
'holes'.

QFILL2	is	a	powerful	re-colouring	routine.	It	may	be	used	to	change	the	colour
of	any	area	on	the	screen.	It	will	cope	with	filling	solid	OR	stipple	colours	in
either	screen	MODE	and	can	even	re-colour	an	existing	stipple	with	another
stipple	colour.	Despite	this	flexibility,	QFILL2	is	faster	than	rival	routines.

In	addition	to	all	these	features,	both	QFILL	routines	have	the	facility	to	operate
as	independent	jobs	on	the	QL.	At	a	simple	level,	this	allows	the	application
program	to	carry	on	as	soon	as	the	appropriate	QFILL	has	been	started.
However,	by	including	the	options	to	allow	such	a	job	to	repeat	the	fill	a	selected
number	of	times,	each	successive	time	in	an	alternative	colour,	it	is	simple	to
produce	a	variety	of	animated	effects.	QFILLs	operated	in	this	way	use	up	a
minimum	of	memory	since	most	of	the	'work'	is	done	by	a	common	'root'
module	that	may	be	shared	by	any	number	of	QFILL	jobs.	Among	the	effects
possible	are	flames,	flowing	water,	smoke,	flying	inSect_s,	flapping	birds:	the
list	is	only	limited	by	your	imagination.	The	example	picture,	RIVER_txt,
demonstrates	all	of	these	examples.	You	can	see	this	picture	either	by	loading	it
directly	into	Graphics	Designer	or	by	converting	it	to	the	_APIC	format	(using
the	GDI_1_task	utility)	and	then	using	the	SuperBASIC	extension	PIC1	to
reproduce	it.	Note	that	it	should	be	drawn	in	MODE	8.

9.1	Using	QFILL1

These	notes	are	specifically	designed	to	illustrate	how	QFILL1	may	be	used
independently	of	the	Graphics	Designer.	However,	even	if	you	don't	ever	intend
to	use	the	routine	from	SuperBASIC,	you	may	still	find	this	Section	helpful	in
fully	realising	the	capabilities	QFILL1	can	offer,	whether	as	a	part	of	Graphics
Designer	or	stand-alone.

The	routine	is	called	as	a	FuNction,	up	to	six	parameters	may	be	supplied.

These	are:

							val=QFILL1([#CHAN,]	INK1,	STRING$	[,INK2,	JOB,	REPEATS])

		normal	defaults....	1							--					--									7				0						1

Items	in	square	brackets	are	optional,	and	the	appropriate	default	is	given	below
each.	In	detail,	the	parameters	work	as	follows:

val This	will	be	set	to	a	number	that	indicates	what	error,	if	any,
occurred.	If	the	call	is	successful,	then	val	will	be	0.	Otherwise,	val
will	contain	the	appropriate	QDOS	error	code	describing	the
problem.	

CHAN This	is	a	number	which	indicates	the	appropriate	SuperBASIC
channel	to	draw	the	shape	in	(this	should	be	a	screen	or	console
channel,	of	course).	The	default	value	of	#1	is	assumed	if	the	first
parameter	in	the	list	isn't	preceded	by	a	#.

INK1 This	defines	the	colour	that	the	shape	will	be	filled	with.	The	colour
can	be	either	solid	or	a	stipple;	in	either	case	it	is	the	normal
composite	value	formed	from	the	MAIN,	CONTRAST	and
STIPPLE	values	by	the	relation:
										INK1=MAIN	+	(MAIN^^CONTRAST)*8	+	STIPPLE*64

In	addition,	negative	values	for	INK1	cause	other	actions	to	be
selected.	INK1=-2	will	always	result	in	a	return	of	the	current
QFILL1	version	number.	INK1=-1	will	stop	ALL	current	QFILL1
jobs.	

STRING$	 This	is	a	string	array	of	data	that	describes	the	shape	to	be	filled.	The
array	consists	of	co-ordinate	pairs	with	each	point	using	up	4	bytes
(or	characters)	of	STRING$.	For	example,	suppose	a	simple	triangle
is	to	be	drawn	which	has	its	corners	at	the	points:
										20,30;	420,30;	220,200

		+--+

		|Top	left	of	window																																											(511,0)|

		|	(X,Y	are	0,0)																																										max	X	is	511|

		|																																																																				|

		|		20,30																																								420,30															|

		|			***																		|

		|					***																				|

		|							***************************************																						|

		|									***********************************																								|

		|											*******************************																										|

		|													***************************																												|

		|															**********************																															|

		|																	******************																																	|

		|																			**************																																			|

		|																					**********																																					|

		|																							******																																							|

		|																									**																																									|

		|																						220,200																																							|

		|																																																																				|

		|(0,255)																			max	Y	is	255																					(511,255)|

		+--+

				

								NOTE:	QFILL1	draws	relative	to		the	origin	of	the	chosen

								SuperBASIC	window.	The	top	left	corner	is	0,0	and	the	maximum

								values	of	X	and	Y	are	511	and	255	respectively.		Usually,	the

								actual	limits	will	be	less	than	these	values,	of	course.	Shapes

								will	be	reproduced	correctly;	if	they	are	out	of	the	window

								range,	they	will	simply	be	'chopped'	at	the	appropriate	boundary.

								For	this	shape,	STRING$	would	be	set	up	as	follows:

								STRING$=CHR$(0)	&	CHR$(20)	&	CHR$(0)	&	CHR$(30)

																<================>			<================>

																				0+20=20	(X)										0+30=30	(Y)

																

								then	for	the	second	point:

				

								STRING$=STRING$	&	CHR$(1)	&	CHR$(164)	&	CHR$(0)	&	CHR$(30)

																										<=================>			<================>

																												256+164=420	(X)									0+30=30	(Y)

														

								and	finally	for	the	third	point:

				

								STRING$=STRING$	&	CHR$(0)	&	CHR$(220)	&	CHR$(0)	&	CHR$(200)

																										<=================>			<=================>

																													0+220=220	(X)									0+200=200	(Y)

														

								Note	that	QFILL1	will	assume	the	shape	to	be	solid	with	lines

								drawn	between	the	points	supplied	in	the	order	supplied.	It	will

								draw	the	final	line	between	the	first	and	last	points	specified

								automatically	(from	220,200	to	20,30	in	this	simple	example).

				

								Shapes	can	be	re-entrant	and	lines	may	cross:	QFILL1	will	still

								do	a	sensible	fill.

				

								There	is	a	limit	to	the	size	of	the	STRING$	that	may	be	passed	to

								QFILL1.	This	is	governed	by	the	size	of	the	work	area	that	the

								routine	takes	from	the	common	heap.	Currently	this	is	set	to	1K,

								of	which	about	750	bytes	are	available	for	STRING$.		This

								correspends	to	a	shape	defined	by	up	to	187	points.

				

								It	would	be	more	convenient	to	define	the	shape	passed	to	QFILL1

								by	an	integer	array,	coords%	for	example.	In	this	case	the

								example	above	would	be	defined	by:

				

								coords%(1,1)=20			:	coords%(1,2)=30

								coords%(2,1)=420		:	coords%(2,2)=30

								coords%(3,1)=220		:	coords%(3,2)=200

				

								The	following	FuNction	will	draw	any	shape	defined	by	coords%.

								DEFine	FuNction	Qfill1_Interface%(length,chan,ink1,ink2,job,no_fills)

										LOCal	string$(750),i

										string$=""

										FOR	i=1	TO	length

												string$=string$	&	CHR$(coords%(i,1)	DIV	256)	&

														CHR$(coords%(i,1)	MOD	256)	&	CHR$(coords%(i,2)	DIV	256)	&

														CHR$(coords%(i,2)	MOD	256)

										END	FOR	i

										RETurn	QFILL1(#chan,ink1,string$,ink2,job,no_fills)

								END	DEFine	Qfill1_Interface%

INK2				This	defines	a	second	colour	that	will	be	used	if	JOB	is	set	up

								to	cause	repetitive	fills.	It	is	formed	in	the	same	way	as	INK1

								from	the	required	MAIN,	CONTRAST	and	STIPPLE	values.

JOB					The	default	value	of	0	will	cause	a	fill	to	operate	as	part	of

								the	calling	program	code.	In	this	case	the	function	only	returns

								control	when	the	fill	is	completed,	and	all	other	jobs	will	be

								prevented	from	using	QFILL1	while	the	current	fill	is	being	done.

				

								Values	from	1	to	255	(actually,	larger	positive	values	will	also

								work,	they	are	taken	as	MOD	256)	will	set	the	fill	up	as	an

								independent	job.	Control	returns	to	the	calling	program	as	soon

								as	the	job	is	initiated.

				

								The	actual	value	will	determine	the	priority	of	the	job.	Note

								that	negative	values	of	JOB	are	not	allowed	and	will	result	in

								QFILL1	returning	the	BAD	PARAMETER	error	code	(-15).

								

								Up	to	10	concurrent	fills	are	allowed.	An	attempt	to	start	more

								than	ten	at	one	time	will	get	the	error	code	-2.	Jobs	may	either

								stop	automatically	(when	the	appropriate	number	of	REPEATS	has

								occurred)	or	be	stopped	by	the	QFILL1(-1)	call.

REPEATS	This	parameter	only	has	an	effect	if	JOB	is	>0.	In	this	case,

								REPEATS	controls	how	many	times	the	fill	will	be	performed	before

								the	created	job	stops	itself.

								

								Any	valid	16-bit	integer	(positive)	is	allowed,	i.e.		from	1	to

								32767.		If	REPEATS	is	0	or	negative,	the	fill	is	repeated

								indefinitely.	In	this	case	the	special	call	to	QFILL1(-1)	can	be

								used	to	stop	ALL	the	current	QFILL1	jobs.

								Repetitive	fills	are	done	in	alternate	colours	as	defined	by	INK1

								and	INK2.

9.2	Using	QFILL2

The	demonstration	program	QFILL2_demo_bas	illustrates	most	of	the	following
notes	about	the	routine.	Simply	LRUN	the	program	after	installing	QFILL2
(both	QFILL	routines	are	loaded	automatically	by	the	Graphics	Designer	boot
program).	If	you	don't	like	demos,	the	following	notes	will	reveal	all!

A	call	to	QFILL2	is	made	as	follows:

																			val=QFILL2(X,	Y,	INK,	[ENABLE_STIPPLE,	BUFFER,	JOB])

				normal	defaults.........			-		-		-												0										2048				0

Items	in	square	brackets	are	optional,	and	the	appropriate	default	is	given	below
each.	In	detail,	the	parameters	work	as	follows:

X	and	Y These	define	the	position	on	the	screen	that	the	fill	is	to
start	from.	QFILL2	doesn't	use	windows;	rather,	it
regards	the	entire	area	of	the	screen	as	its	working
window.	In	operation,	fills	are	only	constrained	by	the
boundary	of	the	shape	that	is	being	re-coloured,	or	by	the
physical	top,	bottom	or	sides	of	the	QL	display.	X	and	Y
are	in	the	range	0	to	511	(X,	across	the	screen)	and	0	to
255	(Y,	down	from	the	top	of	the	screen);	the	top	left
corner	of	the	screen	is	0,0.	

If	a	call	to	QFILL2	is	made	with	X	negative,	this	is
treated	as	a	request	to	stop	any	active	repeating	QFILL2
jobs	(created	by	a	call	to	QFILL2	with	JOB	<	0).

INK This	is	the	colour	that	the	area	will	be	changed	to.	INK	is
the	composite	value	formed	from	the	MAIN,
CONTRAST	and	STIPPLE	values	by	the	relation:	

INK=MAIN	+	(MAIN^^CONTRAST)*8	+	STIPPLE*64

If	the	area	being	filled	contains	a	colour	in	common	with
INK,	QFILL2	will	fill	the	area	in	a	neutral	(non-
common)	colour	first	before	proceeding	to	complete	the
fill	in	the	selected	colour.	

ENABLE_STIPPLE		 This	is	a	logical	switch	that	is	used	to	allow	QFILL2	to
re-colour	an	existing	stipple.	If	ENABLE_STIPPLE	is
false	(0),	then	QFILL2	will	always	assume	that	the	area
being	filled	is	a	solid	colour.	It	determines	what	this
colour	is	when	it	first	starts	the	fill,	by	looking	at	the
pixel	element	at	the	chosen	starting	point,	X,Y.	If	you
happen	to	choose	a	starting	point	that	is	actually	in	an
area	which	is	coloured	with	a	stipple,	then	QFILL2	will
only	re-colour	half	of	the	stipple	pattern,	or	possibly	as
little	as	a	single	pixel,	depending	on	the	actual	stipple
pattern.	

If	ENABLE_STIPPLE	is	true	(not	0),	then	QFILL2	will
always	assume	that	the	area	being	filled	is	a	stipple.	To
this	end,	instead	of	simply	looking	at	a	single	pixel	at
X,Y	in	order	to	determine	the	current	area	colour,	it
examines	a	small	box	2	by	2	pixels	in	size.	This	allows
the	routine	to	work	with	any	stipple	pattern	INCLUDING
solid	colours	(which	it	treats	simply	as	a	stipple	with	both
MAIN	and	CONTRAST	colours	the	same).	

There	are	a	couple	of	small	disadvantages	with	using
QFILL2	with	the	ENABLE_STIPPLE	option	set	to	true,
though.	The	first	is	that	fills	take	a	little	longer	than	with
the	option	set	to	false.	

This	is	unlikely	to	be	noticeable	unless	frequent	fills
involving	large	areas	being	re-coloured	are	attempted.
The	second	is	that	you	must	be	careful	to	set	X	and	Y
away	from	the	boundary	of	the	required	fill	area.	If	you
do	get	too	close,	then	it	is	possible	for	the	routine	to
include	pixel	elements	from	outside	the	required	area
boundary	within	the	2	by	2	box.	In	this	case,	you	will	end
up	with	QFILL2	doing	rather	peculiar	things.	

When	used	within	Graphics	Designer,	QFILL2	is	always
called	with	ENABLE_STIPPLE	set	true.	

BUFFER	QFILL2 needs	to	'remember'	information	as	it	operates.	This	is
mostly	to	do	with	places	in	the	area	that	it	must	'go	back
to'	after	it	has	completed	the	current	part	of	the	fill.
Complicated	patterns	may	have	many	more	such	'go	back
to'	points	than	simple	shapes;	for	example,	a	fill	around
an	area	containing	text	will	require	a	large	number	of
such	points	to	be	remembered.	

If	QFILL2	runs	out	of	buffer	space	while	doing	a	fill,	it
will	indicate	this	by	a	destinctive	BEEP.	The	fill	will	still
carry	on	but	there	will	be	areas	of	the	shape	that	are	not
completely	filled.	You	can	specify	how	much	memory	is
to	be	made	available	for	each	fill	by	altering	the
BUFFER	parameter.	

The	default	BUFFER	is	2048,	which	is	large	enough	for
most	likely	shapes.	You	can	specify	smaller	buffers	if	you
want.	This	might	be	necessary	if	you	are	using	QFILL2
on	an	unexpanded	QL,	especially	if	other	programs,	such
as	Graphics	Designer,	are	loaded.	Larger	buffers	might	be
needed	for	fills	around	a	large	window	filled	with	text,
for	example.	

Note	that	the	default	value	for	BUFFER,	when	QFILL2
is	used	from	within	Graphics	Designer,	is	256	bytes.	You
will	find	that	this	is	enough	for	simple	shapes	but	will
need	to	be	increased	if	moderately	complicated	areas	are
to	be	filled.	

JOB The	default	value	of	0	will	cause	a	fill	to	operate	as	part
of	the	calling	program	code.	In	this	case,	the	function
only	returns	control	when	the	fill	is	completed,	and	all
other	jobs	will	be	prevented	from	using	QFILL2	while
the	current	fill	is	being	done.	Values	from	1	to	255
(actually,	larger	positive	values	will	also	work;	they	are
taken	as	MOD	256)	will	set	the	fill	up	as	an	independent
job.	Control	returns	to	the	calling	program	as	soon	as	the

job	is	initiated.	The	actual	value	will	determine	the
priority	of	the	job.	Negative	values	of	JOB	are	used	to
initiate	repeating	fills.	The	priority	of	the	job	is	still
determined	by	the	specified	value	(taken	as	positive)	but
instead	of	the	fill	job	simply	stopping	when	the	chosen
area	is	completely	filled,	the	job	re-starts	the	fill	from	the
beginning	again.	When	this	happens,	since	the	fill	area
will	now	be	completely	filled	with	INK	colour,	QFILL2
will	do	the	fill	twice,	the	first	time	in	a	neutral	colour,	as
described	in	the	Section	about	the	INK	parameter	above.
The	repeating	fill,	once	started,	will	carry	on,	repeatedly
re-filling	the	area	in	this	way	until	it	is	stopped	by	the
special	call	to	QFILL2(-1),	as	described	in	the	Section	on
X	and	Y	above.	Up	to	10	repeating	fills	may	be	active	at
one	time	and	as	many	'once	only'	(JOB>0)	fills	as	the	QL
will	allow.

9.3	Additional	Information	about	QFILL1	and	QFILL2

Part	of	the	protocol	that	allows	either	QFILL	to	multitask	requires	that	no	two
tasks	may	actually	try	to	initiate	a	job,	i.e.	be	actually	in	the	process	of	the
QFILL	call,	at	the	same	time.	Once	a	job	has	been	set	up,	another	task	may	issue
a	new	call	(or	another	call	from	the	same	task,	of	course).

This	restriction	is	automatic	and	is	achieved	by	a	flag	within	each	QFILL	routine
that	is	set	whenever	it	is	active.	If	another	call	is	made	while	this	flag	is	set,	the
call	is	left	waiting	in	a	loop	until	the	flag	is	cleared.	The	flag	is	ONLY	cleared	by
the	QFILL	routine	itself	when	the	existing	call	returns.

There	are	several	implications	arising	from	this.

Firstly,	if	a	task	(a	compiled	SuperBASIC	program	for	example)	has	issued	a	call
to	either	QFILL	without	using	the	JOB	feature,	any	other	task	that	calls	that
QFILL	will	be	blocked	(not	suspended,	note;	the	code	will	be	periodically
looking	to	see	if	the	existing	QFILL	job	has	finished).	This	will	apply	equally	to
a	call	from	SuperBASIC,	which	will	appear	to	'hang	up'	until	the	existing	fill
finishes.

This	is	where	a	problem	could	arise.	Say	you	set	up	a	non-JOB	fill	from	a	task
but	then	use	a	software	toolkit	to	stop	the	task	BEFORE	the	fill	finishes.	This
will	not	directly	cause	any	problems	except	that	the	QFILL	routine	will	not	have
cleared	its	access	flag.	The	result	of	this	is	that

ALL	subsequent	calls	to	the	function	(of	any	kind)	will	'hang'.	This	is	a	very
good	way	of	locking	up	the	entire	machine!

Note	that	no	errors	or	traps	or	any	other	nasties	will	occur;	the	computer	will
simply	sit	there	waiting	for	some	kind	person	to	press	the	reset	button,	which	is
the	only	way	to	recover.

The	solution	to	this	potential	problem	is	simple.	DON'T	use	a	toolkit	to	stop	a
fill	that	is	only	partly	completed.	Note	that	the	independent	JOB	fills	don't	suffer
from	this	problem.	You	are	free	to	stop	a	partial	fill	of	this	kind	whenever	you
want.	The	only	time	the	restriction	applies	is	when	the	QFILL	base	routine	is

active,	that	is	when	a	non-JOB	fill	is	in	progress.	Normally,	it	is	simpler	to	use
the	appropriate	call	to	either	QFILL	to	stop	a	current	fill,	even	if	you	do	have	a
toolkit.

There	is	a	simple	way	to	find	out	if	a	current	fill	may	be	safely	aborted	by	a
toolkit.	This	is	to	issue	the	command	PRINT	QFILL1(-1)	or	PRINT
QFILL2(0,-1)	as	appropriate.	In	fact	this	is	an	ideal	check	to	make,	since	the
function	will	only	return	a	value	when	it	IS	safe	to	abort	any	active	fills	via	the
dreaded	toolkit.	If	any	of	the	current	fills	are	not	independent	jobs,	the	version
request	will	wait	for	the	offending	fill	to	finish	before	returning.

Some	thought	should	be	given	to	how	you	expect	QFILL2	to	work.	It	is	possible
for	unexpected	things	to	happen	in	some	situations,	unless	you	are	aware	of
some	of	the	peculiarities	of	the	routine.

The	first	situation	that	might	cause	problems	is	when	an	area	coloured	with	a
stipple	pattern	is	re-coloured.	If	the	surrounding	area	is	either	a	solid	colour	or
another	stipple	that	has	a	colour	in	common	with	the	area	to	be	filled,	then,
depending	on	the	actual	stipple	patterns,	you	may	get	surprising	results.

What	can	happen	is	that	QFILL2	may	assume	that	the	area	being	filled	has
numerous	single-pixel-width	extensions	into	the	surrounding	area	and	re-colour
these	accordingly.

Another	potential	problem	can	arise	if	QFILL2	is	forced	to	pre-fill	the	area	in	a
neutral	colour.	If	this	happens,	as	it	will	when	the	area	contains	a	colour	in
common	with	the	specified	INK,	then	the	neutral	colour	used	will	be	the	highest
numbered	non-common	colour.	If	you	are	unlucky,	the	area	surrounding	the
chosen	fill	area	may	be	the	same	as	the	neutral	colour	chosen	by	QFILL2.	In	this
case,	the	fill	will	spill	out	of	the	chosen	area.

TABLE	1	-	THE	DEVELOPMENT	TREE	OF	AN	ACT	ADVENTURE	GAME

																														The	COMPLETED	Text	Adventure

																																			(Mini_Adventure)

																																									|

																																		*	LINKER_task	*

																																									|

								+-----------------+--------------+-----------------+-----------+---------------+----------------+

								|																	|														|																	|											|															|																|

								1																	2														3																	|											|															|																|			

	ACT	base	module				Compressed	text		The	program		******************************	***************	***************

(ACT	or	ACT_SHORT)				(TEXT_com)					(PROG_dta)			*								4											5							*	*					6							*	*						7						*

																										|														|								*	Location	data		Object	data	*	*		Word	data		*	*	Other	data		*

																										|														|								*		(LOCN_dta)				(OBJT_dta)		*	*	(WORD_dta)		*	*	(LAST_dta)		*

																			**************								|								*																												*	*													*	*													*

																			*	TXTcom_task	*							|								*	Both	edited	by	LOCedt_task	*	*	VOCedt_task	*	*	LSTedt_task	*

																			***************							|								******************************	***************	***************

																										|														|

						+---------------+---+-----------+		+--------------------------------+

						|															|															|																																				|

		**																				***************

		*	Location	text		Object	text		General	text			*																				*	BASasm_task	*

		*		(LOCN_msg)			(OBJT_msg)			(GEN_msg)							*																				***************

		*																																												*																											|

		*		These	files	are	all	edited	by	MSGedt_task	*									+-----------------+--------------------+

		**									|																																						|

																																																*	The	player	program																				The	event	program	*

																																																*		(PLAYER_prog)																												(EVENT_prog)		*

																																																*																																																									*

																																																*						These	files	can	both	be	edited	by	SuperBASIC							*

File	names	are	included	in	upper-case	characters,	and	the	appropriate	names
used	in	the	Mini_Adventure	are	in	brackets.

Each	box	shows	a	particular	ACT	utility	program	and	the	data	files	it	edits.
Where	the	input	files	are	from	another	program,	the	utility	name	only	is	included
in	the	box	and	the	input	files	are	shown	by	the	previous	process	or	box	below.
All	the	utility	programs	have	the	_task	extension.

TABLE	2	-	THE	OBJECT	PARAMETERS	DESCRIBED

Parameter				 Meaning
0,1 Describing	noun	or	adjective	word.	The	word	number	is
2,3 divided	between	the	first	and	second	parameter	in	each
4,5 pair	with	the	first	containing	(#word	DIV	256)	while
6,7 the	second	contains	(#word	MOD	256).	For	example,
8,9 values	of	2	and	123	for	parameters	0	and	1	represent

				word	number	635	(2*256+123).
10 Object	location.	0	indicates	that	it	is	held.
11 Containing	or	supporting	object.	0	if	not	contained.
12 The	weight	of	the	object.
13 The	size	of	the	object.

14 The	volume	of	the	object	(or	surface	area,	see	P15	B4)
15 Bit	flags:

				0	Lid:	0	if	no	lid,	1	if	it	has	a	lid.
				1	Lid	state:	0	if	open,	1	if	closed.
				2	Burning:	0	if	not,	1	if	is.	Note:	The	lamp
								(object	0)	is	special;	this	bit	indicates
								if	it	is	switched	off	(0)	or	on	(1).
				3	Set	after	an	object	has	been	described	once.
				4	For	objects	with	volume	or	surface	area.
								0	for	volume;	1	for	surface	area.
				5	Used	by	find_objects	routine.
				6	Set	if	the	object	can	support	or	contain
								other	objects.
				7	Set	if	the	object	will	burn.

16 Restriction	flags:
				0	Open	(Note:	The	restriction
				1	Close	applies	if	the	bit	is	set)
				2-7	Unused	(yet)

17 A	counter	used	for	burning	objects.	It	should	be	set	to
zero	unless	the	object	is	to	start	out	on	fire.	In	this
case	(if	parameter	15	bit	2	is	set)	this	value	will
determine	how	long	the	object	will	burn.	A	value	of	100
gives	about	1	minute.

18 Bit	flags	0	Solid	(0)	or	liquid	(1).
							1	For	containers	this	bit	is	set	if	the
											object	can	contain	a	liquid.
							2	Object	inedible	(0)	or	edible	(1).	Note:
											All	liquids	are	edible.
							3	Set	if	an	edible	object	is	poisonous.
							4	Set	if	the	object	can	be	used	to	extinguish	a	fire.
				5-7	Unused.

TABLE	3	-	LOCATION	0	PARAMETERS	DESCRIBED

Parameter				 Meaning
0 Current	player	location.
1 Previous	player	location.
2 Bit	flags	0	Set	after	the	initial	startup	message

(general	message	7)	has	been	output.
1	Used	by	check_if_dead.	Should	be	set	to	0.
2-7	Reserved	for	future	system	expansion.

3 Set	after	a	special	reply	is	to	be	output	by	a	Yes	or	No
response.	The	value	(1	to	255)	indicates	which	special
response	is	to	be	made.	It	is	cleared	after	the	next
player	command	regardless	of	whether	a	Yes	or	No
response	is	actually	made.

4 The	player's	current	score.
5 The	player's	total	burden	(weight	of	all	objects

currently	carried).
6 Player's	health	rating.	0	is	dead.	To	kill	the	player,

update	this	value	to	zero.	The	normal	maximum
value	is	20.

7 Player's	maximum	carrying	capacity.	The	actual	capacity
is	this	value	plus	the	health	rating	in	parameter	6.
The	total	burden	(parameter	5)	will	not	be	allowed
to	exceed	this	via	a	command	to	pick	up	an	object.

8 Number	of	remaining	reincarnations	allowed.
9-10 Reserved	for	future	system	expansion.

NOTE:	Various	special	responses	can	be	set	up	by	simply	setting	the	value	of
parameter	3.	The	responses	are	handled	by	the	routine	yes_or_no_response	and
apply	when	the	player	responds	with	Yes	or	No	to	particular	questions.

The	Mini_Adventure	has	three	of	these	built	in	(corresponding	to	values	of	1	to
3	of	parameter	3).

These	are:

Safety	net	on	quitting	game.

Response	after	a	certain	message	about	picking	up	liquids.
Response	to	certain	SQUEEZE	commands.

TABLE	4	-	THE	OBJECTS	IN	THE	MINI_ADVENTURE

Number Description Location Contained	in
0 Electric	torch 1 2
1 Tool	box 1 -
2 Broken	torch 1 -
3 Gas	lighter 1 -
4 Oil 3 -
5 Sponge 2 -
6 Waste	bin 1 -
7 Note 1 6
8 Note 7 -

TABLE	5	-	WORD	TERMINATING	NUMBERS

Terminating	number		 Meaning
0 Unused	in	the	Mini_Adventure
1 Direction-	or	movement-related
2 'Throw-away'	words	("on",	"in",	"the",	etc.)
3 'Command'	words	(usually	verbs)
4 Adjectives
5 Nouns
6 Special	word	types	used	in	"find_objects"
7 Swear	words
8 Unused
9 Unused

TABLE	6	-	THE	MAIN	TABLE	AREA	IN	THE	ACT	BASE	MODULE

Entry		 Offset		 Length		 Description
VARLOC		 $2E 4 Pointer	to	the	variables	-	here
SRNLOC $38 4 Pointer	to	the	SAVE/RESTORE	filename	-	here

CONID $48 4 The	text	screen	channel	ID	value
NEXT $4C 1 Number	of	external	routines
NVAR $4D 1 		"					"	variables
NLOC $4E 1 		"					"	locations
NOBJ $4F 1 		"					"	objects
NLOC_P $50 1 		"					"	location	parameters
NOBJ_P $51 1 		"					"	object	parameters
ENERMG $55 1 Enable	error	messages	flag
LOCLOC $66 4 Pointer	to	location	data	-	here
OBJLOC $6A 4 "	"	object	data	-	here

This	table	is	pointed	to	by	A6.	For	example:	to	read	the	value	of	the	text	screen
channel	ID,	the	assembler	instruction	MOVE.L	$48(A6),A0	could	be	used.	The
entries	where	the	description	finishes	with	'-	here'	are	relative	pointers.

For	example:	to	point	A0	to	the	start	of	the	object	data,	use	the	instruction	LEA
$6A(A6),A0	followed	by	the	instruction	ADDA.L	(A0),A0.

	BACKING UP YOUR MASTER ACT DISK AND OTHER WARNINGS
	0.0 THE DEMONSTRATION MINI_ADVENTURE
	1.0 OVERVIEW OF ACT
	1.0.1 ACT Notational Conventions
	1.0.2 The QL CALL bug
	1.1 Fixed Limits of the System
	1.1.1 Initial Planning for Your Adventure

	1.2 The Organisation of Messages
	1.3 Object and Location data
	1.4 The Vocabulary
	1.5 The System Programs
	1.6 The Component Parts
	1.7 Adding Colour and Formatting Screen Text
	1.7.1 Inserting Colour with the MSGedt Utility
	1.7.2 Considerations for Changes of Text Colour
	1.7.3 Split-MODE Screens
	1.7.4 Formatting Messages

	2.0 BEGINNERS GUIDE TO USING ACT
	2.0.1 The CAPTAIN - ACT's Front End
	2.0.2 The CAPTAIN and Memory
	2.0.3 The CAPTAIN's Hot-Key Re-awakening
	2.1 Adding a New Location to the Mini_Adventure
	2.1.1 Editing the Location Message File
	2.1.2 Editing the Location Data File

	2.2 Adding a New Object to the Mini_Adventure
	2.2.1 Describing Objects in the Text
	2.2.2 The Object Data

	2.3 Producing the Compressed Text File
	2.4 Producing the Compiled Program File
	2.5 Linking the Modules to Form a Completed Game
	2.6 Tips on Using the Utility Programs
	2.6.1 MSGedt_task
	2.6.2 TXTcom_task
	2.6.3 BASasm_task
	2.6.4 VOCedt_task

	2.7 Special Features to Watch Out For
	2.7.1 Object 0, the Lamp
	2.7.2 Object 3, the Lighter
	2.7.3 Special Effects at Locations: Draughts and the Gas Leak
	2.7.4 Other Special Effects

	3.0 A DETAILED DESCRIPTION OF THE ACT SYSTEM
	3.1 The ACT System Language
	3.2 The ACT System Commands
	3.2.1 Commands with no Parameters
	3.2.2 Commands with 1 parameter
	3.2.3 Commands with 2 Parameters
	3.2.4 Commands with 3 Parameters

	3.3 The Data Structure of the Mini_Adventure
	3.3.1 Location Messages
	3.3.2 Object Messages
	3.3.3 Location Data
	3.3.4 Object Data

	3.4 How the System Programs Work
	3.4.1 The Player Program
	3.4.2 The Event Program
	3.4.3 Considerations for Split-MODE Screens
	3.4.4 May We Reserve Some Space?

	3.5 Interfacing Machine-Code Extensions to ACT
	3.6 The ACT On-Line Game Debugger System
	3.6.1 What Is the Debugger?
	3.6.2 How Does the Debugger Operate?
	3.6.3 The Debbugger Commands
	3.6.4 An Example Editing Session Based on the Mini_Adventure
	3.6.5 The Debug Session, Step by Step

	4.0 ADDING NEW FEATURES TO THE SYSTEM
	4.1 Adding a New Word Function to the System
	4.2 Changing the Lighter to a Box of Matches
	4.3 Using the Routine YES_or_NO_Response
	4.4 "Magic Transform" Words
	4.5 The Use of Flags to Control Particular Events or Commands
	4.6 Arranging for a Time-Delayed Event
	4.7 Who's Afraid of the Dark?
	4.8 Etcetera, etcetera

	5.0 SOME FINAL COMMENTS ABOUT ACT AND WRITING ADVENTURE GAMES
	6.0 APPENDIX 1 - THE GRAPHICS DESIGNER
	6.1 Overview
	6.2 The Additional Drawing Routines QFILL1 and QFILL2
	6.3 Commands
	6.4 The PIC1 Utility

	7.0 APPENDIX 2 - LINKING ILLUSTRATIONS INTO AN ACT GAME
	7.1 The Basics: How to Add Pictures to ACT
	7.1.1 Adding the Picture Extensions to an ACT Game
	7.1.2 Producing the Composite Picture File

	7.2 Details of the Utility Programs
	7.2.1 SCNcom, the Screen Compressor
	7.2.2 GDI_1_task, the ACT / Graphics Designer Interface
	7.2.3 GDI_2_task, the Picture Compiler

	7.3 Extra Graphics Extensions
	7.4 More About ACT's Split-MODE Screens
	7.5 Making Alterations
	7.6 Additional Comments on Graphics Designer Pictures
	7.7 Additional Information

	8.0 APPENDIX 3 - ADDING SOUNDS AND FONTS
	8.1 What Is SNDedt?
	8.2 How Are Sounds Incorporated into an ACT Game?
	8.3 Starting SNDedt
	8.4 Finding Your Way Around the SNDedt Screen
	8.5 How To Use the Editing Window
	8.6 SNDedt Commands
	8.7 Loading the Machine-Code Module into a Game and CALLing the Sounds
	8.7.1 Adding the Sounds Module to the ACT Last Data File
	8.7.2 CALLing the Sounds from ACTBASIC Programs

	8.8 The Sounds Used in IMAGINE
	8.9 Adding Fonts

	9.0 APPENDIX 4 - QFILL1 AND QFILL2
	9.1 Using QFILL1
	9.2 Using QFILL2
	9.3 Additional Information about QFILL1 and QFILL2

