

Sinclair QL Retro Gaming

Sinclair QL Retro Gaming

1

Introduction

Introduction of home computers in the 1980’s with extended graphics capabilities opened

the door to improved Character Fonts, whether you call them Glyphs, Bitmaps or

created as Vectored Images. The graphic capabilities soon created small 2D images

named Sprites. In the 1980s and for most of the 1990s, Sprites became the standard way

to integrate the graphics images used in what has became Classic Computer Games.

A Sprite Bitmap is designed to be part of a larger scene; it is made up of tiny squares of

colour that represent the pixels of the 2D image displayed to screen. For computer

programming purposes a Bitmap is a collection of Bytes or an Array stored in memory

identifying the Pixels of an image arrangement in columns and rows. Initially used to

handle graphical objects separate from the video memory the term has since been loosely

applied to various graphical overlays.

Since modern computers and gaming consoles now have dedicated 3D Video chips, they

can actually render 3D objects more efficiently than 2D Sprites. The Sprites have

therefore become less common in modern video games. However, they are still used for

other purposes such as to add navigation buttons, click on symbols to enhance the user

interface and add visual appeal.

Today's computer monitors screens have millions of pixels compared to early video

consoles which only had a few thousand. Therefore the characters and objects in early

games can look very pixelated. In the eighties computer platforms could only keep track

of few moving Sprites. Moving images were a sequence of single Sprites typically 8x16

pixels with four colours, one being a transparency. Yet even within these restricted

limitations programmers soon learned how to draw Sprites that looked like vivid

animated characters.

Drawing a Sprite with a smiley face needs to be six, seven, eight pixels across. At the

beginning not having the space for a character’s head, the best Sprite Designers would

imply a face, without having to actually draw them.

The creating and modifying of pixel characters

or objects soon became a recognised art form.

2

Character Bitmaps.

As Digital representation of data in computer systems gathered pace and more elaborate

character codes were introduced, Internationally accepted standards permitted worldwide

interchange of text in electronic form. Character sets such ASCII uses 8-bit encoding

whereas Unicode uses variable bit encoding. Unicode represents most of the characters

used in many written languages in today’s world while ASCII still widely used, is based

around the West’s Latin script.

The Bitmap character Generation is also known as dot matrix because in this method

characters are represented by an array of dots in the matrix form. The Array is two

dimensional having columns and rows as in the 5x7 shown below. Modern higher

resolution devices may use larger arrays of 100x100.

In this example the DATA fields shows 0’s as Black

and 1’s as White, as a 1-bit Colour scheme.

 Grid 5x7

Characters Fonts represent different styles and sized characters and aspects such as

Bold, Italics etc. Character Generation accepts address for the character and from the

Fonts selected gives the relative bit pattern for that character as an output. Here the size

of the pixel is fixed and hence the size of the dot, therefore the more complicated a

Character set, the higher number of pixels and therefore larger arrays.

Each Pixel is represented by a Cell in an Array and a character is placed on the screen by

copying Pixel values from the character array into some position of the screen’s frame

buffer. Early values for a Pixel represented a fixed colour as with the original QL QDOS

screen arrangement, however with modern computers a Pixel value also controls the

intensity as well.

Bitmap Storage

There are many different bitmap file formats, but most are based around the simple

premise of Pixel columns and rows. Today’s standards involve colour depths and in some

cases complicated encoding.

Hobbyist programs in the eighties employed simple

methods for storage. The Bitmap saved as a string of

Bytes literally dumped from an array or straight from

memory. To LOAD they reversed the process, reading

the file contents directly into memory or to an Array.

The second method was to SAVE as DATA Lines to

MERGE within other programs.

Bit Depth Number of Colours

8 256

12 4,096

16 65,536

24 16,777,216

32 4,294,967,296

3

Resolution of Digital Images

The higher the Resolution comes the greater the number of Pixels which leads to a better

quality picture. Resolution is the measure of Pixel density, usually measured in dots per

square inch (dpi). For example Images with a Resolution of 72 dpi, such as those

generally used on websites means that a 1-inch square contains a matrix of Pixels that is

72 pixels wide by 72 pixels high or 5184 Pixels per square inch. Each Pixel also has

colour depth: hue (its quality of colour or wave length) and value (relative darkness or

lightness its energy) and represented by a binary number. The combination of higher

resolution and representation of colour depth requires a much larger screen memory.

Computer Screen Colour

The number of bits indicates how many colours are available for each Pixel. For a Black

and White image, only 1-bit is needed either 0 OFF or 1 ON, for 2-bit colour: 00, 01, 10,

11. Increasing the bits per pixel then the greater colour depth is achievable. A Monitor or

TV screen Pixel is generated by three colours (Red, Green, and Blue) and the different

colours seen are due to different combinations and light intensities of these primary

colours.

White Grey Black

For a White section of a screen all three colours are active with about the same relative

intensities as in sunlight. Gray parts of the screen have all three producing light, but at a

much lower intensity. Black is the lack of any emitted light.

 Colour Pixel Colour Pixel Colour Pixel

Primary Colour: Red Green Blue

 Colour Pixel Colour Pixel Colour Pixel

Colour Combinations: Cyan Magenta Yellow

 Colour Pixel Colour Pixel Colour Pixel

Other Mixtures of Colours

Mixtures of two or three primary colours with different intensities give the other colours.

The combinations for Orange (Red with a little Green) - Pink (Red with a little Green and

a little Blue) and Turquoise (Blue and Green with a little Red) as shown here.

 Colour Pixel Colour Pixel Colour Pixel

4

QL Screen Organisation

The original QL used 32k of Screen RAM and the Pixel coordinate system to define the

position and size of windows. The Screen RAM is organised as a series of 16 Bit words

starting from address Hex 2000 and progressing in the order of the raster scan.

Hex 2000 - 2800 (Dec 131072 - 163840) 128 Bytes x 256 rows

 High Byte Low Bite

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 Bit

G G G G G G G G R R R R R R R R 512

G F G F G F G F R B R B R B R B 256

QDOS Screen MODE

The colour of each pixel on screen is a combination of Green and Red in MODE 4 (512)

plus Blue in MODE 8 (256). Using certain bit values and setting the bits ON or OFF,

the result is a Primary and /or Contrast Colour making a Combined Colour.

 7 6 5 4 3 2 1 0

QDOS Colour Components

For a 2x2 block of Pixels the components

Stipple Contrast XOR Green Red Blue of a QDOS Colour are Primary Colour,

Contrast Colour and Stipple Pattern of

which there are four.

Bit 00 Bit 01 Bit 10 Bit 11

SuperBASIC Colour Combination

When SuperBASIC requests a colour parameter, the Default Contrast is the same as the

Primary colour and the default pattern (or stipple) is a checkerboard. SuperBASIC

then combines the three components into a one byte composite colour passed to QDOS.

To Calculate a composite colour from zero:

add +1 if main colour is Blue, +2 if Red, +4 if Green

then +8 if contrast is different by Blue, +16 if Red, +32 if Green

then 0 for dots, +64 if horizontal stripes, +128 for vertical, +192 for checkerboard.

Bit Value Colour
Bit

Pattern

Colour

Combination

Final

Colour

MODE

8

MODE

4

0 1 Blue 000 No colour Black 0 0

1 2 Red 001 Blue Blue 1

2 4 Green 010 Red Red 2 2

3 8 Blue 011 Red+Blue Magenta 3

4 16 Red 100 Green Green 4 4

5 32 Green 101 Green+Blue Cyan 5

6 64 Stipple 110 Green+Red Yellow 6

7 128 Stipple 111 Green+Red+Blue White 7 7

5

QBITS QL Colour Exploration

To maximise screen usage, MODE 4 High Resolution become something of a necessity

in developing a QBITS BITMap Designer, but has only a four colour scheme Black, Red,

Green, White. Exploring the use of Stipple effects as in the example shown below,

Green and Black gives a simplistic (and by today’s standards very pixelated) change in

intensity (Light to Darkness) adding a partial value to the limited colour range.

Mode 4 High Resolution

In using QDOS High Resolution MODE and Stipple combinations it is also possible to

create the semblance of some additional colours:

Red and White to form a possible Pink.

Red and Green to form a brackish Yellow.

Original QL Limitations

Due to the expense of memory, early computers used 1-bit (2-color), 2-bit (4-color), 4-bit

(16-color) or in case of the QL 8 Mode eight Colours and Flash. The problem with such

small colour depths is that a full range of colours cannot be produced. Following 8-bit

there are now 16-bit high colour and 24-bit true colour formats.

Extending the QL Colour Palette.

The original QL hardware and software limitations have been fortunately overcome as

the QL design concept was ported across to faster machines with expanded memory. The

resultant Higher Resolution Graphics gave better handling of the colour values for each

screen pixel. The operating system QDOS and SuperBASIC having evolved into

SMSQ\E and SBASIC provide improved performance and added commands to address

issues with Colour Palettes.

SBASIC includes COLOUR_NATIVE (machine dependant), COLOUR_QL (standard

QL colours), COLOUR_PAL (8-bit 256 colour palette) and COLOUR_24 (true colour

24-bit palette). Further commands PALETTE_QL and PALETTE_8 allow changing

the colours by mapping then to alternative ones.

https://en.wikipedia.org/wiki/High_color
https://en.wikipedia.org/wiki/Color_depth#True_color_.2824-bit.29
https://en.wikipedia.org/wiki/Pixel

6

QBITS BITMap Concepts

To start, a matrix of columns (width) and rows (height) from which to construct a Grid

displaying a number of Cells each representing a Pixel. Then any image developed to be

displayed at Pixel level (Frame). If creating a number of Bitmap Frames then it would

be useful to identify each for example with a Group name followed by a Frame number.

Create Bitmaps identity (Group name, Frame number, Columns, Rows)

As Monitor screens tend to be rectangular not square in shape with a different number of

horizontal pixels to vertical ones, for this reason sometimes to obtain graphical balance

with say drawing a circle the number of columns may exceed the number of rows.

To represent this in a Bitmap the horizontal is offset making it

oval in shape. But when displayed as Pixels, appears circular.

In constructing a Bitmap image the number of columns and rows

(Resolution) will determine the quality of the display. Grid 16x12

QBITS BITMap Screen Display

The display is divided into four areas: a Title window which also displays the main

Commands, windows for the Grid and display of Pixel Frames, then an area for

displaying the various options of Commands and Grid/Frame Functions.

QBTS BITMap Grid Sizes

The consideration for Grid Sizes began with a 5x7 for a Character Set smaller than the

6x10 SuperBASIC CSIZE 0,0 The next 12x10 is equivalent to the minimum Mode 8

CSIZE 2,0. The rest ranking up to 36x32 are stepped increases using multiples of 4. As

the Grid Resolution increases the Cell width and height are calculated to best utilise the

space within the Grid Window.

7

QBITS BITMap Layout

An individual Grid Cell Size dictates to some extent what is reasonable as a screen

display. This is especially true when trying at the same time to leave enough space to

show a meaningful set of frames and all fitted within a QL Mode 4 (512x256) Pixel

range. Choosing a Grid Cell Size 7x6 Pixels, for a Grid to display 36x32 (columns and

rows), leaves just enough screen width at pixel level, to show six Frames in a row.

The screen layout therefore decided upon provides a Design Grid for creating a Bitmap

object and a number of Pixel Frames for showing multiple results. The Frame area has

three rows of six identified as 0 to 9 - a to h, allowing 18 Frames to be displayed. This can

lead to some interesting usage, which will be viewed later.

At start up a Grid Size is selected Use TAB to choose Colour.

Turn Colour Pallet
 ON/OFF

 with SpaceBar

Frame Step

 <Enter> to
cycle Frames

Select a Grid Cell
with Cursor keys
 ()
directs Vertical /

Horizontal Pointers

Flip(XY) Swaps Left-Right/Top-Bottom Rotate (zZ). Turn Grid 900 Clockwise or Anti-clockwise

Pan/Scroll (Shift) moves the columns horizontally and rows vertically

QBITS BITMap Menu (M)erge (N)ew (L)oad (S)ave (R)eset

Select Grid Size at start up or later by use of the (N)EW command, which presents the

opportunity to (S)ave current Frames (see BITMap Storage). When using the (L)oad

command only Grid Files of the same Grid Size can be selected and loaded.

(M)erge This option allows two Grid files of the same or different Grid Sizes to be

merged. If of different Grid sizes (L)oad the smaller first and Resize as required see

(F4)Grid command. Then select (M)erge which allows a second file to be loaded where

Frames [0 to 9] are merged with the first file’s Frames [a to h].

(R)eset clears all the Cells of the current selected Frame back to Black (Colour=0).To

Clear all Frames use the (N)ew command.

8

QBITS BITMap Storage

The Grid Size determined, Cell squares can be selected and coloured in. As the image is

created the changes are linked to an Array for storage and updated. Having created a

number of designs displayed in the Pixel Frames, there are two formats to (S)ave. One

as a Grid/Frame Dump from the Grid Array, the second as numbered lines generated

as DATA Statements. The opening information saved is the maximum number of

Frames (pm), Columns (cm) and Rows (rm) followed by the individual Cell/Pixel

Colour by Frame 0 to 17 and column/row of selected Grid Size. This identifies the File

Grid Size for later loading and modifying.

 Filenames: QBPGridcmxrm_num (num = 0 to 9)

 QBPDatacmxrm_num (num = 0 to 9)

QBITS BITMAp (F) Keys

(F1) Action - see Page10.

(F2) BkGnd change background colour

from default Black to another colour.

(F3) Copy Frame is useful for developing a number of similar Fames.

(F4) Grid Whereby the current Grid Size can be Resized to a higher Grid Size.

QBITS BITMap Grid

The Pointers highlighted in Green/Red are moved to identify a particular Grid Cell. The

TAB colour shown with Colour Palette ON will be shown in the selected Cell. Pressing

the TAB key will cycle through the Colour Palette. Moving Pointers in OFF Mode does

not write the colour to the Cell. Other actions to rearrange and position the Grid Object

can be carried out by use of Flip(XY), Rotate(zZ), Pan/Scroll.

QBITS BITMap Colour

Screen output used in personal and home computing often had sets of defined Modes. The

Original QL MODE 4 has Black(no colour) Red/Green/White (Green+Red). Mode 8

added Blue and with combinations produces Magenta/Cyan/Yellow. A further option is to

set a Primary and Contrast Colour with a Stipple pattern.

9

QBITS QL Colour (P)alette

Each of the 14 Colours can be set with different combinations of Colour /Contrast and

Stipple. Highlight a Palette Colour from those displayed using Left & Right cursor keys.

Use Spacebar to Switch to Palette Mix, where Colour and Contrast can be switched

ON/OFF with R,r,G,g,B,b keys and the Stipple pattern with S.

Spacebar returns to Palette Select showing any

change. Use TAB to exit back to the Grid.

Spacebar now turns Colour Mode ON/OFF.

TAB will cycle through the Palette displaying

the relevant colour combinations.

Colours displayed with any Contrast and Stipple combination is in the range 0 to 255.

The bits are identified using DIV and MOD functions: Stipple (num DIV 64); Contrast

(num MOD 64 DIV 8); Colour MOD 64 MOD 8). Then the Colour and any Contrast

colours are checked against a table to reconstruct the ON/OFF switch settings of Red

Green and Blue bits.

QBITS QPC 24 Colour (P)alette

The 14 Colours are set with the 24-bit true colour range. Here Red, Green & Blue each

have a range of 0 - 255 or in Hex 00 - FF so the set up is slightly different. Here Red

occupies the highest or most significant Byte, Green occupies the Middle Byte and Blue

the lowest or least significant Byte. The number representing a colour is therefore

between 0 and 16,77,215 or more easily written in Hex 000000 to FFFFFF.

Not requiring a stipple with 24-bit true colours the Palette display is slightly different.

Red = num DIV 65536

Green = num MOD 65536 DIV 256

Blue = num MOD 65536 MOD 256

As before Spacebar switches between Palette and colour mixing of selected Palette

colour. The colour mix is obtained using R, r, G, g, B, b keys to Increase/Decrease the

value for each of the Red Green Blue colours.

Note: QPC2 Windows Settings
Set QPC configuration to something like as

shown, WINDOWl#0,#1,#2 x,y coordinates to

20,50. Then to use 24-Bit true colours you

need to activate Colour_24.

Make sure any WINDOW’s; PAPER, INK,

BLOCK or STRIP are set with an appropriate

colour number. These are more easily written

in Hex ($num).

ie. Black=0, Red=$FF0000, Green=$FF00 Blue=$FF and White=$FFFFFF

10

QBITS BITMap Design in Motion

Early Games took BITMaps design to a new level creating those Sprites as in Aliens

Invaders shot down with your laser gun, or the Ghostly figures chasing you around

those two dimensional mazes. Then the action Sprites with Fisticuffs and Sword fights.

As I was putting together the code for QBITS BITMap Design, one of my thoughts was

to add the means of creating a short action sequence. Below is the design screen showing

Frames that sequence a simple Sprite in various positions. From the basic image seen in

Frame(0) using (F3) Copy I copied to Frame(1) and then changed the left arm position.

Copying this to Frame(2), I then created the next change. In copying Frames, I used the

Flip (XY), Rotate (zZ) and Pan/Scroll commands plus small changes to quickly build

up a sequence of images.

(F1)Action - runs the sequence of Frames with PAUSE Times set between -1 to 20. Use

the SpaceBar to start the Action or step through each frame at your own pace.

Note: QBPGrid20x16_0

Note: Using Frame Step <ENTER> takes you through the sequence of Frames, but using the Grid.

11

QBITS BITMap Background Scenes

The three rows of six Pixel Frames is now revealed as a means to explore creating

backgrounds. Taking Frame(0) the bottom right squares are coloured White. Moving to

Frame(1) and use of (F2)BkGnd to select White and press SpaceBar. Revert the top

area to black with a jagged pattern. Then Copy Frames(0)&(1) to Frames(5), (6), (b) as

shown, use the Flip(X) and Rotate (zZ) to build the outer edges to a background scene.

Using a 36x32 Grid when you Rotate a Frame the

two columns to left and right are filled with the

background colour (the colour contained in cell 0,0).

Therefore at sometime these cells will need to be

coloured in.

Selecting Frame(d) we add a blue sea and yellow

sandy beach then continue with this theme. Above

the seas we have sky so for Frames(7) to (a) use

(F2)BkGnd and set to White.

 Note: QBPGrid36x32_0

It’s now a question of finishing the remaining Frames, filling in sky, sea and sand. Then

adding a few extras, a hot Sun, a group of birds flying, a shady tree, then just to finish

things off, out at sea an island with an erupting volcano.

12

QBITS BITMap Design Procedures

The Program comes in two versions QBBMDesign_QL with a QL Colour Palette and

the QBBMDesign_QPC version using a 24-bit Palette.

BMDesign Access to Grid Functions and Main Commands

FCalc Calculate position [0,0] x,y of Pixels Frame position

SDraw Draws a whole Frame and/or Grid display

GDraw Prints individual Pixel and/or Grid blocks

GReset Reset current Frame Pixels & Grid Cells all to zero

Gflip Flip horizontally or vertically the Pixel Frame & Grid

GRoll Rotate 900 Clockwise or Anticlockwise Pixel Frame & Grid

GSlid Pan / Scroll pixel frame & Grid

FCopy Copy current Frame and Overwrite in another Frame

FAction Step through sequence of Frames simulating Animation

GBkGnd Select an alternative Background colour

CBkGnd Changes the background with new colour

GMerge Select and load new Grid Merge with current Grid

GNew Option to save current Grid then Select new Grid

GSize Selection of Grid Size (N)ew or (R)esize

DGrid Sets Grid Attributes and draws Grid lines

GMerge Loads and Merges previous and new File Frames

GTemp Copy SGrid(p,c,r) to TGrid(p,c,r)

GLive Copy TGrid(p,c,r) to SGrid(p,c,r)

InitGrid Gets Grid attributes, opens Grid & Frame Windows

Ghelp Displays keys used for Grid Functions

CPQL Colour Palette for QL Colour/ Contrast/Stipple mix

CP24 Colour Palette for QPC 24-Bit true colour

CPSel Highlight a Palette Colour

CMode Switch between palette selection and colour mix

CRead Reads and identifies Colour/Contrast/Stipple

CRead Reads and identifies 24-bit Colour mix

CPrnt Prints colour components of colour/contrast/stipple

CPrnt Prints colour components of 24-bit colour mix

InitCPQL Sets the Colour Palette/Contrast/Stipple parameters

InitCP24 Sets the Colour Palette

GFSel Identifies Load/Merge/Save the latter for Grid or Data

GFChk Checks file exists for Load or overwrite (y/n) for Save

GLoad Loads selected file into the SGrid(p,c,r)

GSave Saves Array dump or DATA statements to selected file

InitDrive Set available Device Drives

InitWin Set WINDOWS#0,#1,#2 and call other Init code

InitTitle Display QBITS Title and main Commands New/Load/Save etc.

13

QBBMDesign_QL & QBBMDesign_QPC

The main code differences being driven by the Colour Palettes and in most cases are the

change of colour allocation from Decimal (0-255) to Hex ($000000 to $FFFFFF) for use

with 24-bit true colour in setting a Windows BORDER, PAPER and INK.

Note: They can be the change of a single INK or BLOCK colour attribute to a full line

or group of lines of code shown with the same line numbers. This especially applies to

code lines of CPQL & CP24 and Init for Colour Palettes. Lines 619, 622, 623 are

specific to only the QL version and these are shown enclosed.

The Code is set out in groups:

Lines 100 plus are BMDesign the Main Menu of Commands and Grid/Frame Functions

Lines 400 plus are Selecting and setting up the Grid Size for New, Merge and Resize.

Lines 600 plus are Selecting and setting the Colour Palette

Lines 800 plus are File Select, File Check, Load & Save

Lines 900 plus the Initial WINDOW’s set up and their parameters etc.

Lines 1000 plus A QL to QPC Grid Colour Conversion.

QBITS BITMap Display

As an added program QBBMDisplay Merges a Frame DATA file and displays the 18

Frames as a BITMap picture which can be enlarged to fill more of the screen. First load

the Prog, change Line 103 to the Data Filename required, then decide the Mode to run. If

there is space, increase the (en) enlarge value. Then RUN the program. After loading the

DATA file the program should display the result to screen.

QBBMDisplay Procedures

 Init Sets the Screen Windows and Title

DLoad Reads Data lines of MERGE File and Displays to screen

DCalc Calculates the position offsets for each Frame

DDraw Draws the Pixel BLOCKs to screen

14

100 REMark QBBMDesign_QL (QBITS BITMap Design 2019 v01)
100 REMark QBBMDesign_QPC (QBITS BITMap Design 2019 v02)

102 MODE 4 :InitWin:BMDesign
102 COLOUR_24:InitWin:BMDesign

104 DEFine PROCedure BMDesign
105 dn=5:gm=0:sm=0:GSize:fp=1:p=0:FCalc:CLS#0 :REMark dn Sets Default Drive

106 REPeat Des_lp
107 IF cur=4:SGrid(p,x,y)=CP(cs%):c=x:r=y:fp=1:gp=1:FCalc:GDraw
108 BLOCK#4,236 8,8,26,0:INK#4,cur:CURSOR#4,cx+x*cw,24 :PRINT#4,' '
109 BLOCK#4,12,170,4,34,0:INK#4,cur:CURSOR#4,8,24+cy+y*rh:PRINT#4,' '
110 BLOCK#4,10,7,230,4,CP(cs%):k=CODE(INKEY$(-1))

111 SELect ON k
112 =48 TO 57:p=k-48:fp=1:gp=1 :FCalc:SDraw :REMark 0 to 9
113 =97 TO 104:p=k-87:fp=1:gp=1:FCalc:SDraw :REMark a to h
121 =10:IF p=pm:p=0:gp=1:FCalc:SDraw:ELSE p=p+1:gp=1:FCalc:SDraw

118 =80,112:CLS#7: CPQL :WHelp REMark (P)alette QL
118 =80,112:CLS#7: CP24 :WHelp REMark (P)alette QPC

119 = 9:IF cur=4:cs%=cs%+1:IF cs%>13:cs%=0 :REMark <TAB>Change Colour
120 =32:IF cur=2:cur=4:ELSE cur=2 :REMark <SBar> Colour ON/OFF

119 = 9:IF cur=$FF00:cs%=cs%+1:IF cs%>13:cs%=0 :REMark <TAB>Change Colour
120 =32:IF cur=$FF0000:cur=$FF00:ELSE cur=$FF0000 :REMark <SBar>Colour ON/OFF

122 =192:x=x-1:IF x< 0:x=0
123 =200:x=x+1:IF x=cm:x=cm-1 :REMark () x,y Grid Pointers
124 =208:y=y-1:IF y< 0:y=0
125 =216:y=y+1:IF y=rm:y=rm-1

114 =232:CLS#7 :FAction :WHelp :REMark (F1)Frame Action
115 =236:CLS#7 :GBkGnd :WHelp :REMark (F2)Grid BackGnd
116 =240:CLS#7:n=p :GCopy :WHelp :REMark (F3)Copy
117 =244:CLS#7:IF gm<9 :sm=2 :GSize :WHelp :REMark (F4)Grid Resize
126 =88,120:xf=cm-1:yf=0:zx=-1:zy=1 :GFlip :REMark (X)Flip Grid
127 =89,121:yf=rm-1:xf=0:zy=-1:zx=1 :GFlip :REMark (Y)Flip Grid
128 = 90:rxm=rm-1+cs:rt=-1:rym=0:yt=1 :GRoll :REMark (z)Roll ClockWise
129 =122:rxm=cs:rt=1 :rym=rm-1:yt=-1 :GRoll :REMark (Z)Roll Anti-CW
130 =196:pa=cm-1:pb=0:pc=-1:pd=0:md=0 :GSlid :REMark <Shift >Pan Grid
131 =204:pa=0:pb=cm-1:pc=0:pd=-1:md=0 :GSlid
132 =212:sa=rm-1:sb=0:sc=-1:sd=0:md=1 :GSlid :REMark <Shift >Scroll Grid
133 =220:sa=0:sb=rm-1:sc=0:sd=-1:md=1 :GSlid

135 =77,109:ck=0:dg=2 :CLS#7 :GMerge :WHelp :REMark (M)erge Grid
136 =78,110:ck=0:dg=3:sm=1 :GSize :WHelp :REMark (N)ew
137 =76,108:ck=0:dg=1 :CLS#7 :GFSel :WHelp :REMark (L)oad
138 =83,115:ck=0:dg=0 :CLS#7 :GFSel :WHelp :REMark (S)ave Data/Grid
139 =83,114:col=0 :CLS#7 :GReset :WHelp :REMark (R)eset Grid
134 =27:CLS#0:CLS#1:STOP :REMark Exit
140 END SELect
141 END REPeat Des_lp
142 END DEFine

15

 144 DEFine PROCedure FCalc
145 IF p<10:p$=p:ELSE p$=CHR$(p+87)
146 INK#4,7:CURSOR#4,150,14:PRINT#4,p$ Note: CP24 INK#4,$FFFFFF
147 IF fp=1
148 ch=5:pc=p:pr=0
149 IF p> 5:pc=p -6:pr=33
150 IF p>11:pc=p-12:pr=66
151 px=7+INT((36-cm)/2)+pc*37:py=11+INT((32-rm)/2)+pr Note: Sets Frame position px,py
152 END IF
153 END DEFine

155 DEFine PROCedure SDraw Note: Draw Single Frame/Grid
156 FOR r=0 TO rm-1:FOR c=0 TO cm-1:GDraw:END FOR c:END FOR r
157 fp=0:gp=0:cur=2
158 END DEFine

160 DEFine PROCedure GDraw Note: Draw Single Pixel/Cell
161 IF gp=1:BLOCK#4,cw-1,rh-1,19+c*cw,37+r*rh,SGrid(p,c,r)
162 IF fp=1 OR fp=3:BLOCK#ch,1,1,px+c,py+r,SGrid(p,c,r)
163 END DEFine

165 DEFine PROCedure GReset
166 CLS#7:CURSOR#7,20,6:PRINT#7,'Reset/Clear Grid: ';p$;' (y/n)'
167 IF INKEY$(-1)<>'y':CLS#7:RETurn
168 FOR r=0 TO rm-1:FOR c=0 TO cm-1:SGrid(p,c,r)=col:END FOR c:END FOR r
169 fp=1:FCalc:BLOCK#5,36,32,7+pc*37,11+pr,0:fp=0:gp=1:SDraw:cur=2:CLS#7
170 END DEFine Note: CP24 cur=$FF0000

Note: Flip Column’s or Rows

172 DEFine PROCedure GFlip
173 FOR r=0 TO rm-1
174 FOR c=0 TO cm-1:TGrid(p,xf+c*zx,yf+r*zy)=SGrid(p,c,r)
175 END FOR r
176 GLive:fp=1:gp=1:FCalc:SDraw
177 END DEFine

Note: Rotate Cells Column’s to Rows

179 DEFine PROCedure GRoll
180 IF cm=5 OR rm=10:RETurn
181 FOR r=0 TO rm-1
182 rx=rxm+(r*rt):ry=rym
183 FOR c=0 TO cm-1:TGrid(p,c,r)=SGrid(p,0,0)
184 FOR c=cs TO cs+rm-1:TGrid(p,c,r)=SGrid(p,rx,ry):ry=ry+yt
185 END FOR r
186 GLive:fp=1:gp=1:FCalc:SDraw
187 END DEFine

16

Note: Shift Pan/Scroll Slid Column’s left or right or Rows Up or Down

189 DEFine PROCedure GSlid
190 IF md=0
191 FOR r=0 TO rm-1
192 FOR c=1 TO cm-1
193 TGrid(p,pa,r)=SGrid(p,pb,r):TGrid(p,c+pc,r)=SGrid(p,c+pd,r)
194 END FOR c
195 END FOR r
196 ELSE
197 FOR r=1 TO rm-1
198 FOR c=0 TO cm-1
199 TGrid(p,c,sa)=SGrid(p,c,sb):TGrid(p,c,r+sc)=SGrid(p,c,r+sd)
200 END FOR c
201 END FOR r
202 END IF
203 GLive:fp=1:gp=1:FCalc:SDraw
204 END DEFine

Note: Copy a Frame and overwrite to another Frame

206 DEFine PROCedure GCopy
207 CURSOR#7,28,8:PRINT#7,'Copy Frame ';p$;' to : ';n$;' (y/n)'
208 REPeat C_lp
209 IF n<10:n$=n:ELSE n$=CHR$(n+87)
210 CURSOR#7,154,8:PRINT#7,n$
211 k=CODE(INKEY$(-1))
212 SELect ON k
213 =208:n=n -1:IF n<0:n=0
214 =216:n=n+1:IF n>pm:n=pm
215 =89,121:IF n=p:CLS#7:RETurn :ELSE EXIT C_lp
216 =78,110,240:CLS#7:RETurn
217 END SELect
218 END REPeat C_lp
219 FOR r=0 TO rm-1
220 FOR c=0 TO cm-1:SGrid(n,c,r)=SGrid(p,c,r)
221 END FOR r
222 p=n:fp=1:gp=0:FCalc:SDraw
223 END DEFine

17

Note: (F1) Action see Animation Page 10

225 DEFine PROCedure FAction
226 ch=7:CLS#7:del=10:px=9+INT(32-cm)/2:py=3+INT(28-rm)/2
227 CURSOR#7,88,6:PRINT#7,' Increase/Decrease'
228 CURSOR#7,88,18:PRINT#7,'Action Exit(F1)'

229 BLOCK#7,16,3,132,22,5:p=0:fp=3:FCalc:SDraw
229 BLOCK#7,16,3,132,22,$FFFF:p=0:fp=3:FCalc:SDraw Note: CP24

230 REPeat Ani_lp
231 CURSOR#7,70,6:PRINT#7,FILL$(' ',2-LEN(del))&del
232 k=CODE(INKEY$(-1))
233 SELect ON k
234 =208:del=del+2:IF del>20:del=20
235 =216:del=del-2:IF del< 0:del=-1
236 = 32:FOR p=0 TO pm:PAUSE del:fp=3:FCalc:SDraw
237 =232:p=0:CLS#7:EXIT Ani_lp
238 END SELect
239 END REPeat Ani_lp
240 END DEFine

Note: Use the Colour Palette to change Background Colour.

242 DEFine PROCedure GBkGnd
243 CLS#7:FOR i=0 TO 13:BLOCK#7,10,8,10+i*16,3,CP(i)
244 CURSOR#7,42,14:PRINT#7,' Set Exit(F2)'
245 BLOCK#7,16,3,90,17,5:ch=7:xg%=7:x1%=cs%:y1%=1:p1=CP(cs%)
246 REPeat Bk_lp
247 CPSel:k=CODE(INKEY$(-1))
248 SELect ON k
249 =192:cs%=cs% -1:IF cs%< 0:cs%=13
250 =200:cs%=cs%+1:IF cs%>13:cs%=0
251 =236:CLS#7:ch=5:EXIT Bk_lp
252 = 32:Bk=CP(cs%):CSwap:fp=1:gp=1:FCalc:SDraw:ch=7
253 END SELect
254 END REPeat Bk_lp
255 END DEFine

257 DEFine PROCedure CSwap
258 FOR r=0 TO rm-1
259 FOR c=0 TO cm-1
260 IF SGrid(p,c,r)= 0 :SGrid(p,c,r)=16
261 IF SGrid(p,c,r)=Bk:SGrid(p,c,r)=32
262 IF SGrid(p,c,r)=16:SGrid(p,c,r)=Bk
263 IF SGrid(p,c,r)=32:SGrid(p,c,r)=0
264 END FOR c
265 END FOR r
266 END DEFine

18

Note: Select Grid Size:

401 DEFine PROCedure GSize

404 CLS#7:INK#7,5:IF sm=1:GFSel Note:sm=0 Resize Grid size sm=1 New grid
404 CLS#7:INK#7,$FFFF:IF sm=1:GFSel Note: CP24

405 CURSOR#7,20,6:PRINT#7,'Select Grid Size: '

406 BLOCK#7,2,4,182,8,5:INK#7,6
406 BLOCK#7,2,4,182,8,$FFFF:INK#7,$FFFF00 Note: CP24

407 REPeat Glp
408 IF gm=0:c1$='05':r1$='07':ELSE c1$=GA(gm,0):r1$=GA(gm,1)
409 CURSOR#7,124,6:PRINT#7,c1$;'x';r1$:k=CODE(INKEY$(-1))
410 SELect ON k
411 =208:gm=gm+1:IF gm>9:gm=9
412 =216:gm=gm-1:IF gm<0:gm=0
413 = 10:c$=c1$:r$=r1$:EXIT Glp
414 = 32,78,110,244:IF sm>0:CLS#7:RETurn
415 END SELect
416 END REPeat Glp
417 IF sm=2 Note:sm=2 Grid Resize
418 FOR p=0 TO pm:GTemp
419 DGrid:DIM SGrid(p,cm-1,rm-1)
420 FOR p=0 TO pm:GLive:fp=1:FCalc:SDraw
421 p=0:fg=0:gp=1:FCalc:SDraw
422 END IF
423 IF sm=1 Note:sm=1 New Grid Size
424 DGrid:DIM SGrid(pm,cm-1,rm-1),TGrid(17,36,32)
425 FOR pr=0 TO 2
426 FOR pc=0 TO 5:BLOCK#5,36,32,7+pc*37,11+pr*33,0 Note :Reset/CLS Frames
427 END FOR pr

428 obg=0:nbg=0:col=7:cur=2:pn=0:fp=0:gp=0 :REMark Set Variables
428 obg=0:nbg=0:col=$FFFFFF:cur=$FF0000:pn=0:fp=0:gp=0 Note: CP24

429 END IF
430 IF sm=0:sm=1:DGrid:DIM SGrid(pm,cm-1,rm-1),TGrid(17,36,32) Note:sm=0 Sel Grid Size
431 CLS#7:WHelp
432 END DEFine

19

Note: GA Grid Attributes Identify the Grid Size
column cm & rows rm with cell width cw and
cell height rh, which are used to calculate the
offsets for the Pointers cx & cy.

434 DEFine PROCedure DGrid
435 pm=17:cm=GA(gm,0):rm=GA(gm,1)
436 cw=GA(gm,2):rh=GA(gm,3):cx=15+cw/2:cy=31+rh/2

437 cur=2:BLOCK#4,228,172,18,36,0:BLOCK#4,30,10,72,14,0 Note: CP24 cur=$FF0000

438 IF cm>rm:cs=2:ELSE cs=0
439 IF cm=5:c$='05':r$='07':ELSE c$=cm:r$=rm

440 INK#4,7:CURSOR#4,73,14:PRINT#4,c$;'x';r$ Note: CP24 INK#4,$FF0000

441 FOR c=0 TO cm:BLOCK#4,1,rm*rh,18+c*cw,36,241 Note:CP24 241-$B6B6B6
442 FOR r=0 TO rm:BLOCK#4,cm*cw,1,18,36+r*rh,241 Note:CP24 241-$B6B6B6
443 END DEFine
.

Note: Merge a second Frame file with one already loaded

445 DEFine PROCedure GMerge
446 FOR p=10 TO 17:GTemp
447 GFSel:IF ck=0:RETurn
448 FOR p=10 TO 17:GLive
449 p=0:fp=0:gp=1:FCalc:SDraw
450 END DEFine

452 DEFine PROCedure GTemp
453 FOR r=0 TO rm-1
454 FOR c=0 TO cm-1:TGrid(p,c,r)=SGrid(p,c,r) Note: Temporary Copy
455 END FOR r
456 END DEFine

458 DEFine PROCedure GLive
459 FOR r=0 TO rm-1
460 FOR c=0 TO cm-1:SGrid(p,c,r)=TGrid(p,c,r) Note: Restore Frames
461 END FOR r
462 END DEFine

20

464 DEFine PROCedure InitGrid
465 LOCal a,b,c:cs%=0:x=0:cx=0:y=0:cy=0:pn=0:fp=0:gp=0
466 DIM a$(4),b$(5),c$(2),r$(2),p$(2),n$(2)
467 DIM TGrid(17,32,28),SFile$(20),CFile$(20)

469 REMark Grid Sizes
470 DIM GA(9,3):RESTORE 472
471 FOR a=0 TO 9:FOR b=0 TO 3:READ c:GA(a,b)=c:END FOR b:END FOR a
472 DATA 5, 7,18,16
473 DATA 12,10,16,14
474 DATA 16,12,13,12
475 DATA 16,16,12,10
476 DATA 20,16,11, 9 Note: variables cm, rm, cw, rh
477 DATA 20,20,10, 8
478 DATA 24,20, 9, 8
479 DATA 28,24, 8, 7
480 DATA 32,28, 7, 6
481 DATA 36,32, 6, 5

483 REMark Grid Win
484 ch=4:OPEN#ch,scr_251x212a250x4:BORDER#ch,1,3:PAPER#ch,0:CLS#ch
485 INK#ch,5:CURSOR#ch,0,2:PRINT#ch,'(P)alette Colour ON/OFF TAB'
486 INK#ch,4:CURSOR#ch,138,2:PRINT#ch,'ON' :BLOCK#ch,16,3,180,6,5
487 INK#ch,2:CURSOR#ch,156,2:PRINT#ch,'OFF':BLOCK#ch,10,7,230,4,7
488 INK#ch,5:CURSOR#ch,6,14:PRINT#ch,'Grid Size: Frame Step '
489 BLOCK#ch,2,4,234,16,5:c$='05':r$='07'

Note: QPC
484 ch=4:OPEN#ch,scr_251x210a270x54:BORDER#ch,1,$FFC82D:PAPER#ch,0:CLS#ch
485 INK#ch,$FFFF:CURSOR#ch,0,2:PRINT#ch,'(P)alette Colour ON/OFF TAB'
486 INK#ch,$FF00:CURSOR#ch,138,2:PRINT#ch,'ON' :BLOCK#ch,16,3,180,6,$FFFF
487 INK#ch,$FF0000:CURSOR#ch,156,2:PRINT#ch,'OFF':BLOCK#ch,10,7,230,4,$FFFFFF
488 INK#ch,$FFFF:CURSOR#ch,6,14:PRINT#ch,'Grid Size: Frame Step '
489 BLOCK#ch,2,4,234,16,$FFFF

491 REMark Frame Win
492 ch=5:OPEN#ch,scr_240x122a8x94:BORDER#ch,1,3:PAPER#ch,0:CLS#ch
493 FOR i=0 TO 3:BLOCK#ch,222,1,6,10+i*33,241
494 FOR i=0 TO 6:BLOCK#ch,1,100,6+i*37,10,241

Note: QPC
492 ch=5:OPEN#ch,scr_240x122a8x94:BORDER#ch,1,$FF00FF:PAPER#ch,0:CLS#ch
493 FOR i=0 TO 3:BLOCK#ch,222,1,6,10+i*33,$B6B6B6
494 FOR i=0 TO 6:BLOCK#ch,1,100,6+i*37,10,$B6B6B6

495 FOR i=0 TO 5:CURSOR#ch,24+i*36,0:PRINT#ch,i
496 FOR i=0 TO 5:CURSOR#ch,24+i*36,110:PRINT#ch,CHR$(i+99)
497 END DEFine

499 DEFine PROCedure GHelp
500 ch=7:CLS#ch:INK#ch,5
501 CURSOR#ch,18, 8:PRINT#ch,'Grid xy() Flip(XY) Turn(z-Z)'
502 CURSOR#ch,36,18:PRINT#ch,'Pan/Scroll Grid (Shift)':ch=5
503 END DEFine

21

600 DEFine PROCedure CPQL Note: QL
601 ch=7:CLS#ch:INK#ch,7
602 CURSOR#ch,76,16:PRINT#ch,'R G B Col <TAB>'
603 CURSOR#ch,46,24:PRINT#ch,'S r g b XOR Exit'

600 DEFine PROCedure CP24 Note: QPC
601 ch=7:CLS#ch:INK#ch,$FFFFF
602 CURSOR#ch,52,16:PRINT#ch,'R G B Col <TAB>'
603 CURSOR#ch,52,24:PRINT#ch,'r g b 24-bit Exit'
604 FOR i=0 TO 3:BLOCK#ch,14,10,61+i*30,14,$FFFFFF

605 CURSOR#ch,4,24:PRINT#ch,'Switch'
606 FOR i=0 TO 13:BLOCK#ch,10,8,10+i*16,2,CP(i)
607 xg%=7:x1%=cs%:y1%=1:p1=CP(cs%):cp1=p1:col=cp1
608 CRead:CPrnt:pck=1:CMode
609 REPeat CP_lp
610 IF pck=0:CPSel:ELSE CPrnt:cp1=col
611 k=CODE(INKEY$(-1))
612 SELect ON k

613 = 66: IF BP%=1 :BP% =0 :ELSE BP% =1
614 = 98: IF bc% =1 :bc% =0 :ELSE bc% =1
615 = 71: IF GP%=4 :GP%=0 :ELSE GP% =4
616 =103: IF gc% =4 :gc% =0 :ELSE gc% =4
617 = 82: IF RP%=2 :RP% =0 :ELSE RP% =2
618 =114: IF rc% =2 :rc% =0 :ELSE rc% =2

613 = 66: BP%=BP%+1 :IF BP%>255:BP%=0
614 = 98: BP%=BP% -1 :IF BP%<0:BP%=255
615 = 71: GP%=GP%+1 :IF GP%>255:GP%=0
616 =103: GP%=GP% -1 :IF GP%<0:GP%=255
617 = 82: RP%=RP%+1 :IF RP%>255:RP%=0
618 =114: RP%=RP% -1 :IF RP%<0:RP%=255

619 = 83,115:stn%=stn%+1:IF stn%>3:stn%=0 Note: QL Stipple

620 =192:IF pck=0:cs%=cs% -1:IF cs%<0 :cs%=13
621 =200:IF pck=0:cs%=cs%+1:IF cs%>13:cs%= 0

622 =208:IF pck=1:cp1=cp1+1:CRead Note: QL Colour Palette 0-255
623 =216:IF pck=1:cp1=cp1 -1:CRead Note: QL Colour Palette 0-255

624 = 32:CMode
625 = 9,80,112:FCalc:EXIT CP_lp
626 END SELect
627 END REPeat CP_lp
628 END DEFine Note x1%=cs%

630 DEFine PROCedure CPSel
631 BLOCK#7,14,12,xg%+x1%*16,y1%,0:BLOCK#7,10,8,xg%+2+x1%*16,y1%+2,p1
632 p1=CP(cs%):x1%=cs%:BLOCK#7,14,12,xg%+x1%*16,y1%,7
633 BLOCK#7,12,10,xg%+1+x1%*16,y1%+1,0:BLOCK#7,10,8,xg%+2+x1%*16,y1%+2,p1
634 END DEFine

22

636 DEFine PROCedure CMode
637 IF pck=0 Note: Colour CPQL CP24
638 pck=1:cp1=CP(cs%):CRead
639 CURSOR#7,6,14:PRINT#7,' ':BLOCK#7,16,3,16,17,5 [$FFFF]
640 ELSE
641 pck=0:CP(cs%)=cp1:CRead
642 CURSOR#7,6,14:PRINT#7,' ‘:BLOCK#7,16,3,16,17,5 [$FFFF]
643 END IF
644 END DEFine

646 DEFine PROCedure CRead Note: QL
647 IF cp1>255:cp1=0
648 IF cp1<0:cp1=255
649 stn% =cp1 DIV 64
650 Con%=cp1 MOD 64 DIV 8 :rc%=Pal(Con%,0):gc%=Pal(Con%,1):bc%=Pal(Con%,2)
651 Maj% =cp1 MOD 64 MOD 8:RP%=Pal(Maj%,0):GP%=Pal(Maj%,1):BP%=Pal(Maj%,2)
652 END DEFine

Note: QL Stipple/Contrast/ Colour

Note: QPC 24Bit Colour

646 DEFine PROCedure CRead
647 RP%=cp1 DIV 65536
648 GP%=cp1 MOD 65536 DIV 256
649 BP%=cp1 MOD 65536 MOD 256
650 END DEFine

654 DEFine PROCedure CPrnt Note: QL
655 col=(RP%+GP%+BP%)+(rc%+gc%+bc%)*8+stn%*64
656 st%=stn%:r1%=RP%:r2%=rc%:g1%=GP%:g2%=gc%:b1%=BP%:b2%=bc%
657 IF col<8:r2%=r1%:g2%=g1%:b2%=b1%:st%=3
658 BLOCK#7,8,6,56,18,Stp(st%,0):BLOCK#7,8,6,65,18,Stp(st%,1)
659 BLOCK#7,8,6,56,26,Stp(st%,2):BLOCK#7,8,6,65,26,Stp(st%,3)
660 BLOCK#7,8,6, 84,18,r1%:BLOCK#7,8,6, 84,26,r2%
661 BLOCK#7,8,6,102,18,g1%:BLOCK#7,8,6,102,26,g2%
662 BLOCK#7,8,6,120,18,b1%:BLOCK#7,8,6,120,26,b2%
663 BLOCK#7,12,10,162,20,col
664 CURSOR#7,180,19:PRINT#7,FILL$(' ',3-LEN(col))&col
665 END DEFine

652 DEFine PROCedure CPrnt Note: QPC
653 r1=RP%*65536:g1=GP%*256:b1=BP%:col=r1+g1+b1
654 BLOCK#ch,12,8,62,15,r1
655 CURSOR#ch, 62,24:PRINT#ch,HEX$(RP%,8)
656 BLOCK#ch,12,8,92,15,g1
657 CURSOR#ch, 92,24:PRINT#ch,HEX$(GP%,8)
658 BLOCK#ch,12,8,122,15,b1
659 CURSOR#ch,122,24:PRINT#ch,HEX$(BP%,8)
660 BLOCK#ch,12,8,152,15,col
661 END DEFine

23

667 DEFine PROCedure InitCPQL Note: CPQL
668 LOCal col, cs, s1, s2, r, g, b
669 DIM CP(13):RESTORE 671 :REMark Colour Palette 0-11
670 FOR cs=0 TO 13:READ col:CP(cs)=col
671 DATA 0,1,2,3,4,5,6,7,227,216,31,225,251,254

673 DIM Pal(7,3):RESTORE 676 :REMark Palette Colour/Contrast
674 FOR col=0 TO 7:READ r,g,b:Pal(col,0)=r:Pal(col,1)=g:Pal(col,2)=b
675 REMark 0 to 7 Colour RP%,GP%,BP% or rc%,gc%,bc%
676 DATA 0,0,0,0,0,1,2,0,0,2,0,1,0,4,0,0,4,1,2,4,0,2,4,1

678 DIM Stp(3,3):RESTORE 682 :REMark Stipple 0-3
679 FOR s1=0 TO 3
680 FOR s2=0 TO 3:READ s:Stp(s1,s2)=s
681 END FOR s1
682 DATA 7,241,7,7,7,7,241,241,241,7,241,7,241,7,7,241
683 END DEFine

663 DEFine PROCedure InitCP24 Note: CP24
664 LOCal col,r,g,b :cs%=7 :REMark colour select%
665 DIM CP(13):RESTORE 670 :REMark Colour Palette 0 to 11
666 FOR col=0 TO 13
667 READ r,g,b:CP(col)=r*65536+g*256+b
668 END FOR col
669 REMark 0 to 13 Colour RP%,GP%,BP%
670 DATA 0,0,0 :REMark Black
671 DATA 0,0,$FF :REMark Blue
672 DATA $FF,0,0 :REMark Red
673 DATA $FF,0,$FF :REMark Magenta
674 DATA 0,$FF,0 :REMark Green
675 DATA 0,$FF,$FF :REMark Cyan
676 DATA $FF,$FF,0 :REMark Yellow
677 DATA $FF,$FF,$FF :REMark White
678 DATA $6D,$24,$24 :REMark Brown
679 DATA $FF,$D8,$B8 :REMark Beige
680 DATA $FF,$C0,$40 :REMark Orange
681 DATA $40,$C0,$FF :REMark Light Blue
682 DATA $FF,$80,$FF :REMark Pink
683 DATA $AA,$AA,$AA :REMark Slate
684 END DEFine

24

800 DEFine PROCedure GFSel Note: Grid File Select
801 IF dg%=0
802 CURSOR#7,26,14:PRINT#7,'Save as (D)ata or (G)rid file'
803 IF KEYROW(3)=64:dg%=3:CLS#7:GO TO 809 :REMark (G)rid
804 IF KEYROW(4)=64:dg%=4:CLS#7:GO TO 810 :REMark (D)ata
805 GO TO 802
806 END IF
807 IF dg%=1:a$='Grid':b$='Load '
808 IF dg%=2:a$='Grid':b$='Merge'
809 IF dg%=3:a$='Grid':b$='Save '
810 IF dg%=4:a$='Data':b$='Save'
811 CURSOR#7,38, 2:PRINT#7,'Select ';a$;' file to ';b$;
812 CURSOR#7,20,14:PRINT#7,' QBP';a$;c$;'x';r$;'_ (y/n)'
813 INK#7,6
814 REPeat Sel_lp
815 CURSOR#7,38,14:PRINT#7,Drv$(dn%):CURSOR#7,146,14:PRINT#7,pn%
816 k=CODE(INKEY$(-1))
817 SELect ON k
818 =192:pn%=pn% -1:IF pn%<0:pn%=0 :REMark File 0-9
819 =200:pn%=pn%+1:IF pn%>9:pn%=9
820 =208:dn%=dn%+1:IF dn%>8:dn%=8 :REMark Device mdv1_ to Dos1_
821 =216:dn%=dn% -1:IF dn%<1:dn%=1
822 =89,121:ck%=1:SFile$='QBP'&a$&c$&'x'&r$&'_'&pn%:EXIT Sel_lp

823 =78,110:INK#7,5:CLS#7:RETurn
823 =78,110:INK#7,$FFFF:CLS#7:RETurn Note: Hex Numbers for CP24

824 END SELect
825 END REPeat Sel_lp
826 IF dg%=1 OR dg%=2:GFChk:IF ck%=1:GLoad:CLS#7:ELSE CLS#7:RETurn
827 IF dg%=3 OR dg%=4:GFChk:GSave:CLS#7
828 END DEFine

830 DEFine PROCedure GFChk
831 INK#7,5:CURSOR#7,20,24:PRINT#7,' Searching... ':PAUSE 20
832 DELETE Drv$(dn%)&'FList'
833 OPEN_NEW#9,Drv$(dn%)&'FList':DIR#9,Drv$(dn%):CLOSE#9
834 OPEN_IN#9,Drv$(dn%)&'FList'
835 REPeat dir_lp
836 IF EOF(#9)
837 CLOSE#9:CURSOR#7,20,24:PRINT#7,' File NOT Found'
838 PAUSE 20:ck%=0:EXIT dir_lp
839 END IF
840 INPUT#9,CFile$:IF CFile$==SFile$:CLOSE#9:ck%=1:EXIT dir_lp
841 END REPeat dir_lp
842 END DEFine

25

844 DEFine PROCedure GLoad
845 CURSOR#7,20,24:PRINT#7,' Loading... ':PAUSE 20
846 fp%=1:gp%=0:OPEN_IN#9,Drv$(dn%)&SFile$:INPUT#9,pm%\rm%\cm%
847 pt%=pm%:IF dg%=2:pm%=9
848 FOR p=0 TO pm%
849 FCalc
850 FOR r=0 TO rm%-1
851 FOR c=0 TO cm%-1:INPUT#9,SGrid(p,c,r):GDraw
852 END FOR r
853 END FOR p
854 CLOSE#9:pm%=pt%:p%=0:FCalc:fp%=0:gp%=1:SDraw
855 END DEFine

857 DEFine PROCedure GSave
858 IF ck=1
859 CURSOR#7,20,24:PRINT#7,' Overwrite (y/n)'
860 IF INKEY$(-1)=='y':DELETE Drv$(dn%)&SFile$:ELSE RETurn
861 END IF
862 num=2000:CURSOR#7,20,24:PRINT#7,' Saving... ':PAUSE 20
863 OPEN_NEW#9,Drv$(dn%)&SFile$
864 IF dg%=4:PRINT#9,num&' DATA '&pm%&','&rm%&','&cm%:ELSE PRINT#9,pm%\rm%\cm%
865 FOR p=0 TO pm%
866 IF dg%=4:num=num+1:PRINT#9,num&' :'
867 FOR r=0 TO rm%-1
868 IF dg%=4
869 num=num+1:PRINT#9,num&' DATA ';
870 FOR c=0 TO cm%-1:PRINT#9,SGrid(p,c,r);',';
871 PRINT#9,SGrid(p,cm%-1,r)
872 ELSE
873 FOR c=0 TO cm%-1:PRINT#9,SGrid(p,c,r)
874 END IF
875 END FOR r
876 END FOR p
877 CLOSE#9:p%=0
878 END DEFine

880 DEFine PROCedure InitDrive
881 DIM Drv$(8,5):RESTORE 883
882 FOR dn=1 TO 8:READ d$:Drv$(dn)=d$
883 DATA 'mdv1_','mdv2_','flp1_','flp2_','win1_','win2_','dos1_','dos2_'
884 END DEFine

26

QBBMDesign_QL - QBBMDesign_QPC

900 DEFine PROCedure InitWin
901 WINDOW#0,496,32,6,218 :PAPER#0,0:INK#0,7:CLS#0
902 WINDOW#1,496,212,6,4 :PAPER#1,0:INK#1,7:CLS#1
903 WINDOW#2,496,213,6,4 :PAPER#2,0:INK~2,7:CLS#2
904 ch=7:OPEN#ch,scr_240x38a8x54:BORDER#ch,1,3:PAPER#ch,0:CLS#ch
905 BMTitle:InitDrive:InitGrid:InitPal
906 END DEFine

Note: The Window#0,#1,#2 xy coordinates are set to reflect the Higher resolution and larger Width/Depth
measurements of the screen. The Border Colours are also changed for CP24 Mode and written in Hex.

900 DEFine PROCedure InitWin Note:QPC
901 WINDOW#0,496,32,26,268 :PAPER#0,0:INK#0,$FFFFFF:CLS#0
902 WINDOW#1,496,212,26,54 :PAPER#1,0:INK#1,$FFFFFF:CLS#1
903 WINDOW#2,496,213,26,54 :PAPER#2,0:INK#2,$FFFFFF:CLS#2
904 ch=7:OPEN#ch,scr_240x36a28x104:BORDER#ch,1,$FFC82D:PAPER#ch,0:CLS#ch
905 BMTitle:InitDrive:InitGrid:InitCP24
906 END DEFine

950 DEFine PROCedure BMTitle
951 ch=6:OPEN#ch,scr_240x49a8x4:BORDER#ch,1,3:PAPER#ch,0:CLS#ch
952 CSIZE#ch,2,1:OVER#ch,1
953 INK#ch,2:FOR i=0 TO 1:CURSOR#ch,1+i,1+i:PRINT#ch,'QBITS BITMAP Design'
954 INK#ch,7:FOR i=0 TO 1:CURSOR#ch,3+i,1+i:PRINT#ch,'QBITS BITMAP Design'
955 CSIZE#ch,0,0:OVER#ch,0:INK#ch,5
956 CURSOR#ch, 2,24:PRINT#ch,'(F1)Action (F2)BkGnd (F3)Copy (F4)Grid'
957 CURSOR#ch,12,34:PRINT#ch,'(M)erge (N)ew (L)oad (S)ave (R)eset'
960 END DEFine

Note: The Border colour of the Title screen has changed and the Title uses Hex ($num) Style Numbering.

950 DEFine PROCedure BMTitle Note:QPC
951 ch=6:OPEN#ch,scr_240x49a28x54:BORDER#ch,1,$FFC82D:PAPER#ch,0:CLS#ch
952 CSIZE#ch,2,1:OVER#ch,1
953 INK#ch,$FF0000:FOR i=0 TO 1:CURSOR#ch,1+i,1+i:PRINT#ch,'QBITS BITMAP Design'
954 INK#ch,$FFFFFF:FOR i=0 TO 1:CURSOR#ch,3+i,1+i:PRINT#ch,'QBITS BITMAP Design'
955 CSIZE#ch,0,0:OVER#ch,0:INK#ch,$FFFF
956 CURSOR#ch, 2,24:PRINT#ch,'(F1)Action (F2)BkGnd (F3)Copy (F4)Grid'
957 CURSOR#ch,12,34:PRINT#ch,'(M)erge (N)ew (L)oad (S)ave (R)eset'
960 END DEFine

27

QBITS Colour Palette Conversion

Having the two program versions created the need at times to load a Frame File created

with the QL Colour Palette and convert to a 24-Bit Colour Palette of the QPC version.

To accomplish this PROCedure CPConversion is attached to the QBBMDesign_QPC

Prog version. Line 1005 SFile$ contains the Frame File to be converted (this can be

changed as required).

Calling CPConversion: The Frame File is loaded into the SGrid array and should pose

no problems. By use of GTemp the contents are then copied to the TGrid Array. Then it

was a question of reading the TGrid array back into the SGrid array and in such a way

that each QL Palette Colours were converted into a 24-Bit Palette Hex number.

Taking a simplistic approach reading each TGrid array entry and interpreting its CPQL

Palette number as if from the 24-Bit Colour Palette works to some extent if basic

colours are used. However, this does not apply to more complex Colour, Contrast and

Stipple combinations. If this is desired, the information contain within this PDF should

help in writing your own code

1000 DEFine PROCedure CPConversion Note:(QL to QPC)
1001 REMark RUN & Select Grid: Exit Prog :Change SFile$ variable as required…
1002 CLS:
1005 SFile$='QBPGrid24x20_0':dn=6:ck=0:GLoad
1007 PRINT 'File Loaded...'
1010 FOR p=0 TO pm:GTemp
1020 FOR p=0 TO pm
1023 FOR r=0 TO rm-1
1024 FOR c=0 TO cm-1:SGrid(p,c,r)=CP(TGrid(p,c,r)):PRINT#0,;'.';
1034 END FOR r
1044 END FOR p
1046 PRINT 'Save File...'
1049 SFile$='QBTGrid24x20_0':dn=6:dg=3:ck=0:GSave
1054 END DEFine

QBITS BITMap Files

To differentiate between the two Palettes I use (P)al and (T)rue in their filenames.

QBBMDesign_QL QBBMDisplay

QBPGrid05x07_0 QBPData32x28_0

QBPGrid20x16_0

QBPGrid24x20_0

QBPGrid36x32_0

QBBMDesign_QPC

 QBTGrid20x16_0

 QBTGrid24x20_0

 QBTGrid32x28_0

28

QBITS BITMap Display

MERGE a Saved QBPDatacmxrm_n file with program.

100 REMark QBBMDisplay (QBITS BITMap DATA Display v01 2019)

102 km=4:en=2:Init
103 MERGE win1_QBPData32x28_0 :REMark Collect DATA File info
104 DLoad

106 DEFine PROCedure Init
107 WINDOW#1,496/(km/4),212,6,6:BORDER#1,1,2:PAPER#1,0:CLS#1
108 CSIZE#1,2,1:OVER#1,1:INK#1,4
109 INK#1,2:FOR i=0 TO 1:CURSOR 20+i,8+i:PRINT 'QBITS BITMAP Display'
110 INK#1,7:FOR i=0 TO 1:CURSOR 22+i,8+i:PRINT 'QBITS BITMAP Display'
111 CSIZE#1,0,0:OVER#1,0
112 CLS#0:CURSOR#0,20,6:PRINT#0,'Reading DATA...'
113 END DEFine

115 DEFine PROCedure DLoad
116 num=2000:RESTORE num:READ pm,rm,cm:DIM DGrid(pm,cm-1,rm-1)
117 FOR p=0 TO pm
118 FOR r=0 TO rm-1
119 FOR c=0 TO cm-1:READ a$:DGrid(p,c,r)=a$
120 END FOR r
121 END FOR p
122 CLS#0:BLOCK 2+192*en,2+en*84,49,29,7:FOR p=0 TO pm:DCal:DDraw
123 END DEFine

125 DEFine PROCedure DCal
126 ch=1:pc=p:pr=0 :REMark Enlarge Image en=1 or 2
127 IF p> 5:pc=p -6:pr=28*en
128 IF p>11:pc=p-12:pr=56*en
129 px=50+pc*32*en
130 py=30+pr
131 END DEFine

133 DEFine PROCedure DDraw
134 FOR r=0 TO rm-1
135 FOR c=0 TO cm-1:BLOCK#ch,en,en,px+c*en,py+r*en,DGrid(p,c,r)
136 END FOR r
137 END DEFine

Merged file win1_QBPData32x28_0

2000 DATA 17,28,32 REMark pm, rm, cm
2001 :
2002 DATA 0,0
2003 DATA 0,0
2004 DATA 0,0
etc..

