
Minerva4Q68
Concepts

The Concepts Reference Guide describes concepts relating to Minerva SuperBASIC and the
Q68. It is best to think of the Concept Guide as a source of information. If there are any
questions about SuperBASIC or the Q68 itself which arise out of using the computer or other
sections of the manual, then the Concept Guide may have the answer. Concepts are listed in
alphabetical order using the most likely term for that concept. If the subject cannot be found
then consult the index which should be able to tell you which page to turn to.

Where an example is listed with line numbers, then it is a complete program and can be entered
and run. Examples listed without line numbers are usually simple commands and it may not
always be sensible to enter them into the emulator in isolation.

This guide is a combination of the Sinclair QL manuals Concepts section, the Minerva manual,
and the Q68 manual.

The Minerva operating system was originally designed as a replacement ROM operating system
for the Sinclair QL computer, currently licenced under GPLv3. This port is aimed at the Q68, an
FPGA-based replacement board for the QL. It is not intended as a replacement for the SMSQ/E
OS supplied with the Q68, as SMSQ/E is far more extensive and better suited to support the
Q68 hardware than the 48K ROM-based Minerva. We just provide this port to demonstrate the
Q68's ability to run 'old school' ROM images, give Q68 users the Minerva look and feel, and
maybe provide an opportunity to run badly written software that doesn't run on SMSQ/E (but
chances are big that this software won't run on Minerva either).

The current Minerva build is based on v1.98, with a few modifications to run successfully on the
Q68.

© 1984 SINCLAIR RESEARCH LIMITED
© JAN BREDENBEEK
© 1994-2002 TONY TEBBY
© PETER GRAF
© DEREK STEWART
© WOLFGANG LENERZ
© LAURENCE REEVES

Minerva4Q68 V1.63 Release V1.00

2 01/24

arrays
Arrays must be DIMensioned before they are used. When an array is dimensioned the value of
each of its elements is set to zero or a zero length string if it is a string array. An array
dimension runs from zero up to the specified value. There is no limits to the number of
dimensions which can be defined other than the total memory capacity of the computer. An
array of data is stored such that the last index defined cycles round most rapidly:

the array defined by

DIM array(2,4)

will be stored as

0,0 low address
0,1
0,2
0,3
0,4
1,0
1,1
1,3
1,4
2,0
2,1
2,2
2,3
2,4 high address

Command Function

DIM dimension an array
DIMN find out about the dimensions of an array

01/24 3

BASIC
SuperBASIC includes most of the functions, procedures and constructs found in other dialects
of BASIC. Many of these functions are superfluous in SuperBASIC but are included for
compatibility reasons:

GOTO use IF, REPEAT, etc
GOSUB use DEFine PROCedure
ON...GOTO use SELect
ON...GOSUB use SELect

Some commands appear not to be present. They can always be obtained by using a more
general function. For example, there are no LPRINT or LLIST statements in SuperBASIC but
output can be directed to a printer by opening the relevant channel and using PRINT or LIST.

LPRINT use PRINT #
LLIST use LIST #
VAL not required in SuperBASIC
STR$ not required in SuperBASIC
IN not applicable to 68000 processor
OUT not applicable to 68000 processor

 --

comment: Almost all forms of BASIC require the VAL(x$) and STR$(x) functions in order to be
able to convert the internal codified form of the value of a string expression to, or
from the internal codified form of the value of a numeric expression.

These functions are redundant in SuperBASIC because of the provision of a unique
facility referred to as "coercion". The VAL and STR$ functions are therefore not
provided.

break
If at any time the computer fails to respond or you wish to stop a SuperBASIC program or
command then press

[CTRL] [SPACE]

A program broken into in this way can be restarted by using the CONTINUE command.

Screen output may be paused by pressing CTRL F5.

To perform a soft reset,

[CTRL] [SHIFT] [ALT] [TAB]

See the Keyboard Changes section for more keystroke selections.

4 01/24

channels
A channel is a means by which data can be output to or input from a Q68 device. Before a
channel can be used it must first be activated (or opened) with the OPEN command. Certain
channels should always be kept open: these are the default channels and allow simple
communication with the Q68 via the keyboard and screen. When a channel is no longer in use it
can be deactivated (closed) with the CLOSE command.

A channel is identified by a channel number. A channel number is a numeric expression
preceded by a #. When the channel is opened a device is linked to a channel number and the
channel is initialised. Thereafter the channel is identified only by its channel number. For
example:

OPEN #5,SER1

Will link serial port 1 to the channel number 5. When a channel is closed only the channel
number need be specified. For example:

CLOSE #5

Opening a channel requires that the device driver for that channel be activated. Usually there is
more than one way in which the device driver can be activated. This extra information is
appended to the device name and passed to the OPEN command as a parameter. See
concepts device.

Data can be output to a channel by PRINTing to that channel; this is the same mechanism by
which output appears on the Q68's screen. PRINT without a parameter outputs to the default
channel #1. For example:

10 OPEN #5,flp1_test_file
20 PRINT #5,"this text is in file test_file"
30 CLOSE #5

will output the text "this text is in file test_file" to the file test_file. It is important to close the file
after all the accesses have been completed to ensure that all the data is written.

Data can be input from a file in an analogous way using INPUT. Data can be input from a
channel a character at a time using INKEY$.

A channel can be opened as a console channel; output is directed to a specified window on the
Q68's screen and input is taken from the Q68's keyboard. When a console channel is opened
the size and shape of the initial window is specified. If more than one console channel is active
then it is possible for more than one channel to be requesting input at the same time. In this
case, the required channel can be selected by pressing CTRL C to cycle round the waiting
channels. The cursor in the window of the selected channel will flash.

01/24 5

Minerva has three default channels which are opened automatically. Each of these channels is
linked to a window on the Q68's screen.

channel 0 - command and error channel
channel 1 - output and graphics channel
channel 2 - program listing channel

1 & 2

 0

Monitor Television

 --
Command Function

OPEN open a channel for I/O
CLOSE close a previously opened channel
PRINT output to a channel
INPUT input from a channel
INKEY$ input a character from a channel

6 01/24

1

0

2

character set
and keys
The cursor controls are not built in to the operating system: however, if these functions are to be
provided by applications software, they should use the keys specified; also the specified keys
should not normally be used for any other purpose.

The following table is for UK keyboards. Keyings may change with other nationalities

--
Decimal Hex Keying Display/Function

--

0 00 CTRL £ N
UL / NULL

1 01 CTRL A F
1

2 02 CTRL B F
2

3 03 CTRL C F
3 / Change input channel (see note)

4 04 CTRL D F
4

5 05 CTRL E F
5

6 06 CTRL F A
K

7 07 CTRL G ♪
8 08 CTRL H B

S

9 09 TAB (CTRL I) H
T / Next field

10 0A ENTER (CTRL J) New line / Command entry
11 0B CTRL K V

T

12 0C CTRL L F
F

13 0D CTRL M C
R / Enter

14 0E CTRL N S
0

15 0F CTRL O S
I

16 10 CTRL P 0

17 11 CTRL Q 1

18 12 CTRL R 2

19 13 CTRL S 3

20 14 CTRL T 4

21 15 CTRL U 5

22 16 CTRL V 6

23 17 CTRL W 7

24 18 CTRL X 8

25 19 CTRL Y 9

26 1A CTRL Z A

27 1B ESC (CTRL SHIFT |) B / Abort current level of command
28 1C C

29 1D CTRL SHIFT] D

30 1E E

31 1F F

32 20 SPACE
33 21 SHIFT 1 !
34 22 SHIFT 2 "
35 23 # #
36 24 SHIFT 4 $
37 25 SHIFT 5 %
38 26 SHIFT 7 &
39 27 ' '
40 28 SHIFT 9 (
41 29 SHIFT 0)
42 2A SHIFT 8 *
43 2B SHIFT = +
44 2C , ,
45 2D - -
46 2E . .
47 2F / /

01/24 7

--
Decimal Hex Keying Display/Function

--

48 30 0 0
49 31 1 1
50 32 2 2
51 33 3 3
52 34 4 4
53 35 5 5
54 36 6 6
55 37 7 7
56 38 8 8
57 39 9 9
58 3A SHIFT ; :
59 3B ; ;
60 3C SHIFT . <
61 3D = =
62 3E SHIFT . >
63 3F SHIFT / ?

64 40 SHIFT ' @
65 41 SHIFT A A
66 42 SHIFT B B
67 43 SHIFT C C
68 44 SHIFT D D
69 45 SHIFT E E
70 46 SHIFT F F
71 47 SHIFT G G
72 48 SHIFT H H
73 49 SHIFT I I
74 4A SHIFT J J
75 4B SHIFT K K
76 4C SHIFT L L
77 4D SHIFT M M
78 4E SHIFT N N
79 4F SHIFT O O

80 50 SHIFT P P
81 51 SHIFT Q Q
82 52 SHIFT R R
83 53 SHIFT S S
84 54 SHIFT T T
85 55 SHIFT U U
86 56 SHIFT V V
87 57 SHIFT W W
88 58 SHIFT X X
89 59 SHIFT Y Y
90 5A SHIFT Z Z
91 5B [[
92 5C \ \
93 5D]]
94 5E SHIFT 6 ^
95 5F SHIFT - _

8 01/24

--
Decimal Hex Keying Display/Function

--

96 60 SHIFT 3 £
97 61 A a
98 62 B b
99 63 C c
100 64 D d
101 65 E e
102 66 F f
103 67 G g
104 68 H h
105 69 I i
106 6A J j
107 6B K k
108 6C L l
109 6D M m
110 6E N n
111 6F O o

112 70 P p
113 71 Q q
114 72 R r
115 73 S s
116 74 T t
117 75 U u
118 76 V v
119 77 W w
120 78 X x
121 79 Y y
122 7A Z z
123 7B SHIFT [{
124 7C SHIFT \ |
125 7D SHIFT] }
126 7E SHIFT # ~
127 7F SHIFT ESC ©

128 80 CTRL ESC ä
129 81 CTRL SHIFT 1 ã
130 82 CTRL SHIFT ' å
131 83 CTRL SHIFT 3 é
132 84 CTRL SHIFT 4 ö
133 85 CTRL SHIFT 5 õ
134 86 CTRL SHIFT 7 ø
135 87 CTRL ' ü
136 88 CTRL SHIFT 9 ç
137 89 CTRL SHIFT 0 ñ
138 8A CTRL SHIFT 8 z
139 8B CTRL SHIFT = œ
140 8C CTRL , á
141 8D CTRL - à
142 8E CTRL . â
143 8F CTRL / ë

01/24 9

--
Decimal Hex Keying Display/Function

--

144 90 CTRL 0 è
145 91 CTRL 1 ê
146 92 CTRL 2 ï
147 93 CTRL 3 í
148 94 CTRL 4 ì
149 95 CTRL 5 î
150 96 CTRL 6 ó
151 97 CTRL 7 ò
152 98 CTRL 8 ô
153 99 CTRL 9 ú
154 9A CTRL SHIFT ; ù
155 9B CTRL ; û
156 9C CTRL SHIFT , ß
157 9D CTRL = ¢
158 9E CTRL SHIFT . ¥
159 9F CTRL SHIFT / `

160 A0 CTRL SHIFT 2 Ä
161 A1 CTRL SHIFT A Ã
162 A2 CTRL SHIFT B Å
163 A3 CTRL SHIFT C É
164 A4 CTRL SHIFT D Ö
165 A5 CTRL SHIFT E Õ
166 A6 CTRL SHIFT F Ø
167 A7 CTRL SHIFT G Ü
168 A8 CTRL SHIFT H Ç¨
169 A9 CTRL SHIFT I Ñ
170 AA CTRL SHIFT J Æ
171 AB CTRL SHIFT K Œ
172 AC CTRL SHIFT L  alpha
173 AD CTRL SHIFT M  delta
174 AE CTRL SHIFT N  theta
175 AF CTRL SHIFT O  lambda

176 B0 CTRL SHIFT P  mu
177 B1 CTRL SHIFT Q  pi
178 B2 CTRL SHIFT R  phi
179 B3 CTRL SHIFT S ¡
180 B4 CTRL SHIFT T ¿
181 B5 CTRL SHIFT U €
182 B6 CTRL SHIFT V §
183 B7 CTRL SHIFT W ¤
184 B8 CTRL SHIFT X «
185 B9 CTRL SHIFT Y »
186 BA CTRL SHIFT Z º
187 BB CTRL [÷
188 BC CTRL \ 
189 BD CTRL] 
190 BE CTRL SHIFT 6 
191 BF CTRL SHIFT - 

10 01/24

--
Decimal Hex Keying Display/Function

--

192 C0 Left  / Cursor left one character
193 C1 ALT Left  / Cursor to start of line
194 C2 CTRL Left / Backspace  / Delete left one character
195 C3 CTRL ALT Left  / Delete line
196 C4 SHIFT Left Δ / Cursor left one word
197 C5 SHIFT ALT Left ԓ / Pan left
198 C6 SHIFT CTRL Left  / Delete left one word
199 C7 SHIFT CTRL ALT Left 
200 C8 Right  / Cursor right one character
201 C9 ALT Right  / Cursor to end of line
202 CA CTRL Right / Delete  / Delete character under cursor
203 CB CTRL ALT Right  / Delete to end of line
204 CC SHIFT Right ˄ / Cursor right one word
205 CD SHIFT ALT Right  / Pan right
206 CE SHIFT CTRL Right ∞ / Delete word under & right of cursor
207 CF SHIFT CTRL ALT Right 

208 D0 Up ∏ / Cursor up
209 D1 ALT Up  / Scroll up
210 D2 CTRL Up  / Search backward
211 D3 ALT CTRL Up 
212 D4 SHIFT Up / Page Up ʘ / Top of screen
213 D5 SHIFT ALT Up / Home 
214 D6 SHIFT CTRL Up †
215 D7 SHIFT CTRL ALT Up ‡
216 D8 Down  / Cursor down
217 D9 ALT Down ± / Scroll down
218 DA CTRL Down ç / Search forwards
219 DB ALT CTRL Down ≡
220 DC SHIFT Down / Page Down ≤ / Bottom of screen
221 DD SHIFT ALT Down / End ≠
222 DE SHIFT CTRL Down ≥
223 DF SHIFT CTRL ALT Down ≈

224 E0 CAPS LOCK □ / Toggle CAPS LOCK function
225 E1 ALT CAPS LOCK ■
226 E2 CTRL CAPS LOCK ●
227 E3 ALT CTRL CAPS LOCK ϗ
228 E4 SHIFT CAPS LOCK ∂
229 E5 SHIFT ALT CAPS LOCK 
230 E6 SHIFT CTRL CAPS LOCK F

R

231 E7 SHIFT CTRL ALT CAPS LOCK ỿ
232 E8 F1 ħ
233 E9 CTRL F1 
234 EA SHIFT F1 / F6 ¦
235 EB CTRL SHIFT F1 K
236 EC F2 ¼
237 ED CTRL F2 ½
238 EE SHIFT F2 /F7 ¾
239 EF CTRL SHIFT F2 ɯ

01/24 11

--
Decimal Hex Keying Display/Function

--

240 F0 F3 Ψ
241 F1 CTRL F3 
242 F2 SHIFT F3 / F8 
243 F3 CTRL SHIFT F3 
244 F4 F4 
245 F5 CTRL F4 
246 F6 SHIFT F4 / F9 √
247 F7 CTRL SHIFT F4 Ӏ√
248 F8 F5 
249 F9 CTRL F5 
250 FA SHIFT F5 / F10 ѯ
251 FB CTRL SHIFT F5 ʕ
252 FC SHIFT space / Insert Ӏ / "Special" space
253 FD SHIFT TAB ʖ / Back tab (CTRL ignored)
254 FE SHIFT ENTER ░ / "Special" newline (CTRL ignored)
255 FF See below ▒

--

Codes up to 20 hex are either control characters or non-printing characters. Alternative keyings
are shown in brackets after the main keying.

Note that CTRL-C is trapped by Minerva and cannot be detected without changes to the system
variables.

Note that codes C0-DF are cursor control commands.

The ALT key depressed with any key combination other than cursor keys or CAPS LOCK
generates the code FF, followed by a byte indicating what the keycode would have been if ALT
had not been depressed.

Note that CAPS LOCK and CTRL - F5 are trapped by Minerva and cannot be detected without
special software.

12 01/24

clock
Minerva contains a real time clock, which runs when the Q68 is started. It obtains the current
date and time from it's inbuilt battery backed real time clock.

The format used for the date and time is standard ISO format.

2001 JAN 01 12:09:10

Individual year, month, day and time can all be obtained by assigning the string returned by
DATE to a string variable and slicing it. The clock will run from 1961 JAN 01 00:00:00

Comment: For a description of the format, see BS5249: Part 1: 1976 and as modified in
Appendix D.2.1 Table 5 Serial 5 and Appendix E.2 Table 6 Serials 1 and 2.

--
Command Function

--
SDATE set the clock
ADATE adjust the clock
DATE return the date as a number
DATE$ return the date as a string
DAY$ return the day of the week as a string

--

01/24 13

coercion
If necessary SuperBASIC will convert the type of unsuitable data to a type which will allow the
specified operation to proceed.

The operators used determine the conversion required. For example, if an operation requires a
string parameter and a numeric parameter is supplied then SuperBASIC will first convert the
parameter to type string. It is not always possible to convert data to the required form and if the
data cannot be converted an error is reported.

The type of a function or procedure parameter can also be converted to the correct type. For
example, the SuperBASIC LOAD command requires a parameter of type name but can accept
a parameter of type string and which will be converted to the correct type by the procedure
itself. Coercion of this form is always dependent on the way the function or procedure was
implemented.

There is a natural ordering of data types in Minerva, see figure below. String is the most general
type since it can represent integer data (almost exactly). The figure below shows the ordering
diagrammatically. Data can always be converted moving up the diagram but it is not always
possible moving down.

example: a = b + c (no conversion is necessary before performing the
 addition. Conversion is not necessary before assigning
 the result to a.)

a% = b + c (no conversion is necessary before performing the
 addition but the result is converted to integer before
 assigning.)

a$ = b$ + c$ (b$ and c$ are converted to floating point, if possible,
 before being added together. The result is converted
 to string before assigning.)

LOAD "flp1_data" (the string "flp1_data" is converted to type name by
 the load procedure before it is used.)

comment: Statements can be written in SuperBASIC which would generate errors in most other
computer languages. In general, it is possible to mix data types in a very flexible
manner:

i. PRINT "1" + 2 + "3"
 ii. LET a$ = 1 + 2 + a$ + "4"

14 01/24

not always string
 possible

 name

 floating point

 integer always possible

colour
Colours in Minerva can be either a solid colour or a stipple - a mixture of two colours to some
predefined pattern. Colour specification in Minerva can be up to three items: a colour, a contrast
colour and a stipple pattern.

single colour:= composite_colour

The single argument specifies the three parts of the colour specification. The main
colour is contained in the bottom three bits of the colour byte. The next three bits
contain the exclusive or (XOR) of the main colour and the contrast colour. The top
two bits indicate the stipple pattern.

stipple
contrast XOR main (mix)
colour

bit 7 6 5 4 3 2 1 0

By specifying only the bottom three bits (i.e. the required colour) no stipple will be
requested and a single solid colour will be used for display.

double colour:= background, contrast

The colour is a stipple of the two specified colours. The default checkerboard stipple
is assumed (stipple 3)

triple colour:= background, contrast, stipple

Background and contrast colours and stipple are each defined separately.

colours The codes for standard palette colours:

 bit colour

code colour pattern composition 8 colour 4 colour

0 Black 0 0 0 black black
1 Blue 0 0 1 blue blue black
2 Red 0 1 0 red red red
3 Magenta 0 1 1 red + blue magenta red
4 Green 1 0 0 green green green
5 Cyan 1 0 1 green + blue cyan green
6 Yellow 1 1 0 green + red yellow white
7 White 1 1 1 green + red + blue white white

Colour Composition and Codes

01/24 15

stipples Stipples mix a background and a contrast colour in a fine stipple pattern. Stipples
can be used in Minerva in the same manner as ordinary solid colours. There
are four stipple patterns:

Stipple 0 Stipple 1 Stipple 2 Stipple 3

Stipple 3 is the default.

example: i. PAPER 255 : CLS
ii. PAPER 2,4 : CLS
iii. PAPER 0,2,0 : CLS

This program will display all of the colours and stipple patterns available in the COLOUR_QL
mode.

16 01/24

communications
serial RS-232-C
The Q68 is fitted with a single PC standard male 9 pin SubD connector serial port called SER1,
for connecting it to equipment which use serial communications obeying EIA standard RS-232-
C or a compatible standard.

The RS-232-C 'standard' was originally designed to enable computers to send and receive data
via telephone lines using a modem. However, it is now frequently used to connect computers
directly with each other and to various items of peripheral equipment, e.g. printers, modems,
etc.

As the RS-232-C 'standard' manifests itself in many different forms on different pieces of
equipment, it can be an extremely difficult job, even for an expert to connect together for the first
time two pieces of supposedly standard RS-232-C equipment. This section will attempt to cover
most of the basic problems that you may encounter.

The serial port on the Q68 can operate at a 7 or 8 bit rate. There is no parity, nor hardware
handshake.

9 pin Name Function Direction

2 RXD Receive Data In
3 TXD Transmit Data Out
4 DTR Data Terminal Ready Out

Internally pulled up for serial mice
5 GND Signal Ground -
7 RTS Ready to Send Out

Internally pulled up for serial mice

Once the equipment has been connected, the baud rate (the speed of transmission of data)
must be set so that the baud rates for both the Q68 and the connected equipment are the same.
The serial port on the Q68 can be set to operate at:

1200
2400
4800
9600

 19200
38400
57600

115200
 230400 baud

The Q68's baud rate for the serial port is set by the BAUD command.

Any parity instructions set when opening a serial channel will be ignored.

01/24 17

Flow control determines how the Q68 and the peripheral device know when to communicate
with each other. Flow control can be either:

Hardware Not supported in the Q68.

Software Where a signal is sent down the Transmit data line to the receiver, to
say, don't talk now I'm busy (XOFF), or I am now ready to listen (XON).
The receiver can be either the peripheral device, or the Q68 itself.

None There is no flow control. Data will be lost, or corrupted if the receiver is
busy doing other things when data arrives, or cannot process the data it
is receiving fast enough.

Translate, determines whether the data sent should be translated into other characters. This is
generally used when sending text to printers, to convert the ASCII codes which are different
between the Q68 character set, and the printers characters set. See the TRA command.

Serial communications on the Q68 are 'full duplex', that is both receive and transmit can operate
concurrently.

The parity and handshaking are selected when the serial channel is opened. (Not supported in
the Q68)

comment: There is also the serial receive only device (SRX), and serial transmit only device
(STX). They are the same as the SER device, except that one will only transmit data,
and the other will only receive data.

command function

BAUD set transmission speed
OPEN open serial channels *
CLOSE close serial channels

* see concept device for a full specification

18 01/24

data types
variables

integer Integers are whole numbers in the range -32768 to +32767. Variables are assumed
to be integer if the variable identifier is suffixed with a percent %. There are no
integer constants in SuperBASIC, so all constants are stored as floating point
numbers.

syntax: identifier%

example: i. counter%
ii. size_limit%
iii. this_is_an_integer_variable%

floating point
Floating point numbers are in the range +/- (10^-615 to 10^615), with 8 significant
digits. Floating point is the default data type in SuperBASIC. All constants are held in
floating point form and can be entered using exponent notation.

syntax: identifier | constant

example: i. current _accumulation
ii. 76.2356
iii. 354E25

string A string is a sequence of characters up to 32766 characters long. Variables are
assumed to be type string if the variable name is suffixed by a $. String data is
represented by enclosing the required characters in either single or double quotation
marks.

syntax: identifier$ | "text"

example: i. string_variables$
ii. "this is string data"
iii. "this is another string"

name Type name has the same form as a standard SuperBASIC identifier and is used by
the system to name Floppy disk files etc.

syntax: identifier

example: i. flp1_data_file
ii. ser1e

binary Binary values are represented as a sequence of zeros and ones, preceded by a
percentage sign.

syntax: %constant

example: i. %1001
ii. %11001010

01/24 19

devices
A device is a piece of equipment on the Q68 from which data can be received (input) and to
which data can be sent (output).

Since the system makes no assumptions about the ultimate I/O (input/output) device which will
be used, the I/O device can be easily changed and the data diverted between devices. For
example, a program may have to output to a printer at some point during its run. If the printer is
not available then the output can be diverted to a disk file and stored. The file can then be
printed at a later date. I/O on the Q68 can be thought of as being written to and read from a
logical file which is in a standard device-independent form.

All device specific operations are performed by individual device drivers specially written for
each device on the Q68. The system can automatically find and include drivers for peripheral
devices which are fitted.

When a device is activated a channel is opened and linked to the device. To correctly open a
channel device basic information must sometimes be supplied. This extra information is
appended to the device name.

The file name should conform to the rules for a SuperBASIC type name though it is also
possible to build up the file name (device name) as a SuperBASIC string expression.

In summary the general form of a file name is:

identifier [information]

where the complete file name (including the extra information) conforms to the rules for a
SuperBASIC identifier.

Each logical device on the system requires its own particular 'extra information' although default
parameters will be assumed in each case where possible.

define device:= name

where the form of the device name is outlined below.

example for console device

Select Console Device
Underscore
Window Width
Separator
Height
Separator - read as AT
Window X co-ordinate
Separator
Window Y co-ordinate
Separator
length of keyboard type ahead buffer

 con_wXhaxXy_k

20 01/24

CON_wXhaxXy_k Console I/O
| wXh | - window, width, height
| AxXy | - window X,Y co-ordinate of upper left-hand corner
| k | - keyboard type ahead buffer length (bytes)

default: con_448x180a32x16_128

example: OPEN #4,con_20x50a0x0_32
OPEN #8,con_20x50
OPEN #7,con_20x50a10x10

SCR_wXhaxXy Screen Output
[wXh] - window, width, height
[AxXy] - window X, Y co-ordinate

default: scr_448x180a32x16

example: OPEN #4, scr_0x10a20x50
OPEN #5, scr_10x10

SERnpftce Serial (RS-232-C) Receive and Transmit
n port number (1, 2, 3 or 4)
[p] parity [f] handshaking [t] translate
e – 7 bit + even i - ignore flow control d - direct output
o – 7 bit + odd h – handshake CTS/DTR t - translate
m – 7 bit + mark (1) x - XON/XOFF
s – 7 bit + space (0)

[c] carriage return [e] end of file
r - raw data f - <FF> at end of file
c - <CR> is end of line z – CTRL Z at end of file
a - <CR><LF> is end of line
 <CR><FF> is end of page

default: ser1htr (8 bit no parity with handshake, translate)

example: OPEN #3, ser1e
OPEN #4, serxdc
COPY flp1_test_file TO ser1c

SRXnpftce Serial (RS-232-C) Receive only
n port number (1, 2, 3 or 4)
[p] parity [f] handshaking [t] translate
e – 7 bit + even i - ignore flow control d - direct output
o – 7 bit + odd h – handshake CTS/DTR t - translate
m – 7 bit + mark (1) x - XON/XOFF
s – 7 bit + space (0)

[c] carriage return [e] end of file
r - raw data f - <FF> at end of file
c - <CR> is end of line z – CTRL Z at end of file
a - <CR><LF> is end of line
 <CR><FF> is end of page

default: srx1htr (8 bit no parity with handshake, translate)

example: OPEN_IN #3, srx1e
OPEN #4, srxxdc
COPY srx1c TO flp1_test_file

01/24 21

STXnpftce Serial (RS-232-C) Transmit only
n port number (1, 2, 3 or 4)
[p] parity [f] handshaking [t] translate
e – 7 bit + even i - ignore flow control d - direct output
o – 7 bit + odd h – handshake CTS/DTR t - translate
m – 7 bit + mark (1) x - XON/XOFF
s – 7 bit + space (0)

[c] carriage return [e] end of file
r - raw data f - <FF> at end of file
c - <CR> is end of line z – CTRL Z at end of file
a - <CR><LF> is end of line
 <CR><FF> is end of page

default: stx1htr (8 bit no parity with handshake, translate)

example: OPEN_NEW #3, stx1e
OPEN #4, stxxdc
COPY flp1_test_file TO stx1c

PIPE[IDin] [X|P|T] IDout [_[length]] [K] Two ended Pipe device (first in, first out)
IDin indicates the input channel ID.
X is a separator when IDin, P, or T are not specified.
P indicates a permanent pipe.
T indicates a temporary pipe.
IDout indicates the output channel ID.
_length indicates an output pipe length in bytes. 0 indicates an input pipe.
K indicates that length in in kilobytes.

There are two additional pipe-like devices supported:
pipep will start a copy of MultiBASIC.
pipet is a device that always gives an EOF on read and discards output.

default: no default

example: EXEC pipep
OPEN #4, pipe_2048
OPEN #5, pipe_0

comment: See the PIPE section for more information on using pipes

22 01/24

QUBn_name Qubide container file drive File Access
n QUB drive number
name QUB drive file name

default: no default

example: OPEN #9, qub1_data_file
OPEN #9, qub1_test_program
COPY qub1_test_file TO scr_

WINn_name Winchester hard disk drive File Access
n WIN drive number
name WIN drive file name

default: no default

example: OPEN #9, win1_data_file
OPEN #9, win1_test_program
COPY win1_test_file TO scr_

Keyword Function

OPEN initialise a device and activate it for use
CLOSE deactivate a device
COPY copy data between devices
COPY_N copy data between devices, but do not

copy a file's header information
EOF test for end of file
WIDTH set width

01/24 23

direct
command
SuperBASIC makes a distinction between a statement typed in preceded by a line number and
a statement typed in without a line number. Without a line number the statement is a direct
command and is processed immediately by the SuperBASIC command interpreter. For
example, RUN is typed in on the command line and is processed, the effect being that the
program starts to run. If a statement is typed in with a line number then the syntax of the line is
checked and any detectable syntax errors reported. A correct line is entered into the
SuperBASIC program and stored. These statements constitute a SuperBASIC program and will
only be executed when the program is started with the RUN or GOTO command.

Not all SuperBASIC statements make sense when entered as a direct command, for example,
END FOR, END DEFine, etc

directory
devices
Directory devices handle individual files, organised in directories (with at least one root
directory). The drives QUB and WIN are used to access the hard disk container files on FAT32
partitions on the SDHC cards. More details can be found in the hardware-dependent sections of
this manual.

24 01/24

display modes

The Q68 can operate in any of 8 different display modes. Only 3 of these are supported in
Minerva4Q68.

The display modes are selected with the DISP_MODE command, and are numbered as follows:

Mode Description

0 QL 8 colour mode

This is the standard 256 x 256 pixels mode in 8 colours. In this mode you can also
set mode 4, with the usual MODE 4 keyword. This is then equivalent to setting
DISP_MODE 1.

1 QL 4 colour mode
This is the standard 512 x 256 pixels in 4 colours mode. In this mode you can also
set mode 8, with the usual MODE 8 keyword. This is then equivalent to setting
DISP_MODE 0.

4 Large QL 4 colour mode
This is a display of 1024 x 768 pixels in QL 4 colours mode (there is no mode 8 in
this display mode).

--
Command Function

--
DISP_MODE sets the display mode
DISP_TYPE returns the Minerva4Q68 display type

--

high resolution mode

From Minerva4Q68 v1.4 onwards, the Q68's 1024 x 768 4 colour mode is supported. Note that
this mode has not been tested extensively so please use it with caution.

The 1024 x 768 4 colour mode is implemented using the DISP_MODE command with a subset
of the SMSQ/E version. Currently, modes 0 (256 x 256 x 8), 1 (512 x 256 x 4), and 4 (1024 x
768 x 4) are supported.

Implementing the full range, including 65536-colour modes, would require a total rewrite of the
screen drivers, including implementation of the GD2 colour schemes, which is far beyond the
scope of the Minerva4Q68 project and are already available within SMSQ/E.

Note that Minerva's dual screen feature is not supported in 1024 x 768 mode, and trying to
switch to DISP_MODE 4 with dual screen enabled will produce a 'not complete' error. Please
reboot first with dual screen disabled.

01/24 25

If you use the Pointer Interface in1024 x 768 mode, then some caution is required. The ptr_gen
program needs to be patched to support the extended screen size and different screen buffer
address. Thus, you must load it with some code like this (Toolkit II extensions required):

200 DEFine PROCedure patch_ptr
210 LOCal a,p,s
220 a=RESPR(FLEN(\ptr_gen))
230 LBYTES ptr_gen,a
240 s=0: PRINT "Patching pointer interface...";
250 FOR p=a TO a+FLEN(\ptr_gen) STEP 2
260 IF PEEK_L(p)=32768 AND PEEK_W(p+4)=128 AND PEEK_W(p+6)=512

 AND PEEK_W(p+8)=256 THEN
270 POKE_L p-4,HEX('fe800000'): POKE_L p,HEX('30000'): REMark

 buffer address and size
280 POKE_W p+4,256: POKE_W p+6,1024: POKE_W p+8,768: REMark

 line length, X size, Y size
290 s=1: EXIT p
300 END IF
310 END FOR p
320 IF s=1 THEN
330 PRINT "Success!": CALL a: LRESPR wman: LRESPR hot_rext
340 ELSE
350 PRINT "Failed!"
360 END IF
370 END DEFine patch_ptr

Note that you must switch to 1024 x 768 mode BEFORE activating the Pointer Interface. After
this, you cannot switch back to the lower-resolution modes.

The functions SCR_BASE, SCR_LLEN, SCR_XLIM and SCR_YLIM return the base address,
pixel line length in bytes, and X and Y limits of the current screen mode, like their SMSQ/E
counterparts. In the current version, any parameters are ignored.

--
Command Function

--
SCR_BASE returns the screen base address
SCR_LLEN returns the pixel line length in bytes
SCR_XLIM returns the X limits of the current screen mode
SCR_YLIM returns the Y limits of the current screen mode

--

dual screens
Minerva can operate in dual screen mode, if F3 of F4 are pressed at startup. The MODE
command allows you to use both of these screens.

See the MODE command description in the keyword document for details on using the dual
screens in Minerva.

26 01/24

error
handling
Errors are reported by SuperBASIC in a standard form:

 At line line_number : statement_number error_text

Where the line number is the number of the line where the error was detected, statement
number is the number of the statement in the line, and the error text is listed below.

(1) Not complete
An operation has been prematurely terminated (or break has been pressed).

(2) Invalid job
An error return from Minerva relating to system calls controlling multitasking
or I/O.

(3) Out of memory
Minerva and/or SuperBASIC has insufficient free memory.

(4) Out of range
Usually results from attempts to write outside a window or an incorrect array
index.

(5) Buffer full
An I/O operation to fetch a buffer full of characters filled the buffer before a
record terminator was found.

(6) Channel not open
Attempt to read, write or close a channel which has not been opened.
Can also occur if an attempt to open a channel fails.

(7) Not found
File system, device, medium or file cannot be found.
SuperBASIC cannot find an identifier. This can result from incorrectly nested
structures.

(8) Already exists
The file system has found an already existing file with the same name as a new
file to be opened for writing.

(9) In use
The file system has found that a file or device is already exclusively used.

(10) End of file
End of file detected during input.

(11) Drive full
A device has been filled (usually Floppy disk).

(12) Bad name
The file system has recognised the name but there is a syntax or parameter
value error.

In SuperBASIC it means a name has been used out of context. For
example, a variable has been used as a procedure.

(13) Xmit error
RS-232-C parity error.

(14) Format failed
Attempted format operation has failed, the medium is possibly faulty.

01/24 27

(15) Bad parameter
There is an error in the parameter list of a system or SuperBASIC procedure or
function call.

An attempt was made to read data from a write only device.

(16) Bad or changed medium
The medium is possibly faulty

(17) Error in expression
An error was detected while evaluating an expression.

(18) Overflow
Arithmetic overflow division by zero, square root of a negative number, etc.

(19) Not Implemented

(20) Read only
There has been an attempt to write data to a shared, or write protected file.

(21) Bad line
A SuperBASIC syntax error has occurred.

(22) PROC/FN cleared
This is a message which is for information only and is not reporting an error. It
is reporting that the program has been stopped and subsequently changed
forcing SuperBASIC to reset its internal state to the outer program level and so
losing any procedure environment which may have been in effect.

error reporting
The line number where an error occurred, is returned by ERLIN. And the error number by
ERNUM.

REPORT will report the description of the last error encountered.

error recovery
After an error has occurred the program can be restarted at the next statement by typing

CONTINUE

If the error condition can be corrected, without changing the program, the program can be
restarted at the statement, which triggered the error. Type

RETRY

error handling
Error handling is invoked by a WHEN ERRor clause. When an error is encountered, processing
is passed to the commands in the WHEN ERRor clause. Within the WHEN ERRor clause the
type of error can be tested for, and appropriate actions can be taken.

The WHEN keyword is used to implement a sort of implied subroutine system, where the
programmer doesn’t explicitly write a procedure call or GO SUB but lets it happen when the
conditions are right, as it were.

Having said that, WHEN ERRor routines are executed when conditions are wrong, i.e. an
un-trapped error has occurred. The syntax is:

WHEN ERRor : <statements>
or

WHEN ERRor
<statement>
<statement>
<statement>
<statement>
END WHEN

28 01/24

If an error occurs then the statements on the WHEN ERRor line, or between the WHEN ERRor
and END WHEN lines, will be executed. Normal execution will then resume at the statement
after the one that caused the error. SuperToolkit II users can use the improved CONTINUE and
RETRY statements to resume elsewhere.

If an error occurs within the WHEN ERRor routines, then the program will halt with the usual
error message, but with the additional information during WHEN processing added. The WHEN
ERRor routine is added when it is encountered: thus errors in statements executed before this
will cause errors as usual, and the recovery routine can be changed by passing through another
WHEN ERRor block. The last such block encountered remains in force even after the program
stops, so errors in the command line will cause a recovery attempt - you can turn this off by
typing WHEN ERRor at the command line.

100 WHEN ERROR : PRINT “Whoops!”
110 PRINT “The answer isnt”,1/0
120 WHEN ERROR
130 PRINT “Eeek!”
140 END WHEN
150 PRINT 110

will thus print
Whoops!
Eeek!

and all subsequent error messages will be Eeek! until you type WHEN ERRor at the command
line!

WHEN Variable
WHEN variable will execute a routine when a simple variable is assigned to. It does not work
with arrays, nor when a variable is INPUT or READ into. A number of WHEN conditions can be
set up for a variable, and you can of course have multiple WHEN variables.

If WHEN conditions overlap there is no guarantee as to which will be chosen.(???)

100 WHEN i=5:PRlNT “i is five”
110 WHEN i>8:PRINT “i is big”
120 FOR i=1 TO 10:PRINT i

will print
1
2
3
4
i is five
5
6
7
8
i is big
9
i is big
10

You can get very silly with this facility

100 WHEN a=1:PRINT “a is one
110 WHEN a=2:PRINT “a is now two”:b=5
120 WHEN b=5:a=1:PRINT “b is five”:a=2
130 a=2

will print:
a is now two
a is one
b is five

01/24 29

and end up with a=2. Note that because the WHEN block at line 110 was already active when
the last statement of line 120 is executed, is doesn’t get re-entered. If you alter line 130 to b=5,
you’ll get:

a is one
b is five
a is now two

Provided the condition starts with a simple variable, it can be as complex as you like:
WHEN a>5 AND a<10 is valid.

30 01/24

expressions
SuperBASIC expressions can be string, numeric, logical or a mixture: unsuitable data types are
automatically converted to a suitable form by the system wherever this is possible.

define
monop := | +

| -
| NOT

expression := | [monop] expression operator expression
| (expression)
| atom

atom := | variable
| constant
| function [(expression *|, expression *)]
| array_element

variable := | identifier
 | identifier%
 | identifier$

function := | identifier
 | identifier%
 | identifier$

constant := | digit * [digit] *
 | *[digit] *, *[digit]*
 | *[digit] * [.] *[digit]* E *[digit]*

The final value returned by the evaluation of the expression can be integer giving an
integer_expression, string giving a string_expression or floating point giving a floating
expression. Often floating point and integer expressions are equivalent and the term
numeric_expression is then used.

Logical operators can be included in an expression. If the specified operation is true then a one
is returned as the value of the operation. If the operation is false then a zero is returned. Though
logical operators can be used in any expression they are usually used in the expression part of
an IF statement.

example: i. test_data + 23.3 + 5
ii. "abcdefghijklmnopqrstuvwxyz"(2 TO 4)
iii. 32.1 * (colour = 1)
iv. count = -limit

01/24 31

file types
files
All I/O on the Q68 is to, or from a 'logical file'. Various file types exist.

data SuperBASIC programs, text files. Created using PRINT, SAVE,
accessed using INPUT, INKEY$, LOAD etc.

exec An executable transient program. Saved using SEXEC, loaded using
EXEC, EXEC_W etc.

code Raw memory data, screen images, etc. Saved using SBYTES, loaded
using LBYTES.

32 01/24

functions and
procedures
SuperBASIC functions and procedures are defined with the DEFine FuNction and DEFine
PROCedure statements. A function is activated (or called) by typing its name at the appropriate
point in a SuperBASIC expression. The function must be included in an expression because it is
returning a value and the value must be used. A procedure is activated (or called) by typing its
name as the first item in a SuperBASIC statement.

Data can be passed into a function or procedure by appending a list of actual parameters after
the function or procedure name. This list is compared to a similar list appended after the name
of the function or procedure when it was defined. This second list is called the formal
parameters of the function or procedure. The formal parameters must be SuperBASIC
variables. The actual parameters must be an array, an array slice or a SuperBASIC expression
of which a single variable or constant is the simplest form.

Since the actual parameters are actual expressions, they must have an actual type associated
with them. The formal parameters are merely used to indicate how the actual parameters must
be processed and so have no type associated with them. The items in each list of parameters
are paired off in order when the function or procedure is called and the formal parameters
become equivalent to the actual parameters. There are three distinct ways of using parameters.

If the actual parameter is a single variable and if data is assigned to the formal parameter in the
function or procedure then the data is also assigned to the corresponding actual parameter.

If the actual parameter is an expression then assigning data to the corresponding formal
parameter will have no effect outside the procedure. Note that a variable can be turned into an
expression by enclosing it within brackets.

If the actual parameter is a variable but has not previously been set then assigning data to the
corresponding formal parameter will set the variable specified as the actual parameter.

Variables can be defined to be local to a function or procedure with the LOCal statement. Local
variables have no effect on similarly named variables outside the function or procedure in which
they are defined and so allow greater freedom in choosing sensible variable names without the
risk of corrupting external variables. A local variable is available to any inside function or
procedure called from the procedure function in which it is declared to be local unless
the function or procedure called contains a further local declaration of the same variable name.

Functions and procedures in SuperBASIC can be used recursively. That is a function or
procedure can call itself either directly or indirectly.

Command Function

DEFine FuNction define a function
DEFine PROCedure define a procedure
RETurn leave a function or procedure

(return data from a function)
LOCal define local data in a function or

procedure

01/24 33

graphics
It is important to realise that in some display modes the Q68 screen has non-square pixels and
that changing screen mode will change the shape of the pixels. Thus the graphics procedures
will draw different shapes in different modes. Circles will be circular, in display modes 0 and 1,
and elliptical in display mode 4.

The graphics procedures ensure that whatever screen mode is in use, consistent figures are
produced. It is not possible to use a simple pixel count to indicate sizes of figures, so instead the
graphics procedures use an arbitrary scale and co-ordinate system to specify sizes and
positions of figures.

The graphics procedures use the graphics co-ordinate system, i.e. draw relative to the
graphics origin which is in the bottom left hand corner of the specified or default window. Note
that this is not the same as the Pixel Origin used to define the position of Windows and Blocks
etc. The graphics origin allows a standard Cartesian co-ordinate system to be used. A graphics
cursor is updated after each graphics operation: subsequent operations can either be relative to
this cursor or can be absolute, i.e. relative to the graphics origin.

The Graphics Coordinate System

The scaling factor is such that the full distance in the vertical direction in the specified or
default window has length 100 by default and can be changed with the SCALE command. The
scale in the x direction is equal to the scale in the y direction. However, the length of line which
can be drawn in the x direction is dependent on the shape of the window. Increasing the scale
factor increases the maximum size of the figure which can be drawn before the window size is
exceeded. If the graphics output is switched to a different size of window then the subsequent
size of the output is adjusted to fit the new window. If the figure exceeds its output window then
the figure is clipped.

It is useful to consider the window to be a window onto a larger graphics space in which the
figures are drawn. The SCALE command allows the graphics origin to be set so allowing the
window to be moved around the graphics space.

The graphics procedures are output to the window attached to the specified or default channel
and the output is drawn in the INK colour for that channel.

34 01/24

100
 y

 (0,0) x

--
Command Function

--
CIRCLE draw an ellipse or a circle }
LINE draw a line } absolute
ARC draw an arc of a circle }
POINT plot a point }

--
CIRCLE_R draw an ellipse or a circle }
LINE_R draw a line } relative
ARC_R draw an arc of a circle }
POINT_R plot a point }

--
SCALE set scale and move origin
FILL fill in a shape
CURSOR position text

--

graphics fill
Figures drawn with the graphics and turtle graphics procedures can be optionally 'filled' with a
specified stipple or colour. If FILL is selected then the figure is filled as it is drawn.

The FILL algorithm stores a list of points to plot rather than actually plotting them. When the
figure closes there are two points on the same horizontal line. These two points are connected
by a line in the current ink colour and the process repeats. Fill must always be reselected before
drawing a new figure to ensure that the buffer used to store the list of points is reset.

The following diagram illustrates FILL:

warning: There is an implementation restriction on FILL. FILL must not be used for re-entrant
shapes (i.e. a shape which is concave). Re-entrant shapes must be split into smaller
shapes which are not re-entrant and each sub-shape filled independently.

01/24 35

(75,50)

(50,80)

(10,20) FILL 1:LINE 10,20 TO 75,50 TO 50,80

identifier
An SuperBASIC identifier is a sequence of letters, numbers and underscores.

define: letter := | a..z
 | A..Z

number := | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 0 |

identifier := letter * |[letter | number | _ |] *

example: i. a
ii. limit_1
iii. current_guess
iv. counter

An identifier must begin with a letter followed by a sequence of letters, numbers and
underscores and can be up to 255 characters long. Upper and lower case characters are
equivalent.

Identifiers are used in the SuperBASIC system to identify variables, procedures, functions,
repetition loops, etc.

warning: NO meaning can be attributed to an identifier other than its ability to identify
constructs to SuperBASIC. SuperBASIC cannot infer the intended use of an identifier
from the identifier's name!

keyboard changes
A number of changes have been made to the keyboard, to improve usability and gain access to
some of the new facilities.

The following list of keys did nothing (useful) in previous versions: while the functions they now
perform are (where appropriate) retained on their original keys, these ones are hard-wired into
the system and can't be modified by POKEs. This is especially useful for the new "next jobs"
key, as CTRL-C is forever being zapped by unfriendly software, and never twice the same key
either!

 Keystroke Function Old keystroke
 --
 [CTRL] [ALT] [SPACE] BREAK MultiBASICs (none)
 [CTRL] [TAB] swap displayed screen (none)
 [CTRL] [ALT] [TAB] screen freeze CTRL-F5
 [CTRL] [ALT] [SHIFT] [TAB] Keyboard RESET (none)
 [CTRL] [ENTER] compose character (none)
 [CTRL] [ALT] [ENTER] keyboard queue CTRL-C
 [SHIFT] [CTRL] [ENTER] CAPSLOCK CAPSLOCK
 [ALT] [CTRL] [SHIFT] [ENTER] Call User routine (none)

36 01/24

Compose characters
The only really non-obvious one of these is compose character, CTRL-ENTER. This allows you
to type in that tricky foreign character you know is in there somewhere, but is it on CTRL - = or
CTRL-SHIFT-1 ? Now all you need do is type CTRL-ENTER, A, : for a-umlaut (an a with two
dots), and so on. Where an upper-case version exists, shifting either of the two characters gives
the upper-case result (or having caps lock on, of course). It's been tried to keep the
combinations pretty obvious: \ and / combine with letters to give grave and acute accents, : for
umlaut, and ^ (or 6) for circumflex. The quote key has been avoided, as it's not obvious whether
it adds an accent (΄) or umlaut(΄΄). Note that symbols (^, : etc.) are added correctly whether or
not you press the SHIFT with them: you get an umlaut from CTRL-ENTER, A, ; as well.

The compose table is currently as follows:

01/24 37

á a/ ô o^ ø o! ¡ !!
à a\ ú u/ ü u: ¿ ??
â a^ ù u\ ç c, § pp
ë e: û u^ ñ n~ ¤ ox
è e\ ß ss æ ae « <<
ê e^ ¢ c! œ oe » >>
é e/ ¥ y- α aa º oo
ï i: ˋ \\ δ dd ÷ :-
í i/ ä a: θ tt  the
ì i\ ã a~ λ ||  appropriate
î i^ å ao µ mm  cursor
ó o/ ö o: π pi  key
ò o\ õ o~ Φ ph

keyword
SuperBASIC keywords are identifiers which are defined in the SuperBASIC Keyword Reference
Guide. Keywords have the same form as a SuperBASIC standard identifier. The case of the
keyword is not significant. Keywords are echoed as a mixture of upper and lower case letters
and are always reproduced in full. The upper case portion indicates the minimum required to be
typed in for SuperBASIC to recognise the keyword.

The set of SuperBASIC keywords may be extended by adding procedures to the Q68. It is a
good idea to define these with their names in upper case and this will indicate their special
function in the SuperBASIC system. Conversely, ordinary procedures should be defined with
their names in lower case.

warning: Existing keywords cannot be used as ordinary identifiers within a SuperBASIC
program.

maths
functions
SuperBASIC has the standard trigonometrical and mathematical functions.

Function Name

COS cosine
SIN sin
TAN tangent

ATAN arctangent
ACOT arcotangent

ACOS arcosine
ASIN arcsine

COT cotangent
EXP exponential
LN natural logarithm
LOG10 common logarithm

INT integer
ABS absolute value

RAD convert to radians
DEG convert to degrees

PI return the value of 

RND generate a random number
RANDOMISE reseed the random number generator

38 01/24

multiBASIC
There are very few differences between a MultiBASIC and the standard SuperBASIC
interpreter, (job 0). A MultiBASIC can be started in exactly the same way as any other job, using
EXEC, a front-end program, or one of the Qjump hotkey systems (not supplied with
Minerva4Q68).

A new system vector allows an EXECed job to promote itself to being a SuperBASIC interpreter.
This will inherit all the procedures and functions available to its parent interpreter: any others
added to the parent subsequently will not be seen by the child interpreter, and any added to the
child are only seen by it and its offspring, disappearing when it is removed.

To start a MultiBASIC, just enter the command EXEC pipep

You are now looking at another SuperBASIC interpreter which to all intents and purposes
behaves just like the original with the noted exceptions below.

A MultiBASIC can have its job priority altered just like any other job and any toolkit extensions
which relate to job control should work in the usual way.

Please note that you should load only SuperBASIC extensions into a MultiBASIC, unless you
can guarantee that you’ll never throw it away. Loading operating system extensions, such as
QJump’s Pointer Interface, is almost bound to cause problems if they disappear when the owner
job goes away. Packages in the latter category include Lightning, and SuperToolkit II with the
MDV extensions: SuperToolkit II without the MDV stuff, the Pointer Toolkit, and the Turbo
Toolkit should be safe enough.

The MultiBASIC supplied has just one channel opened for it, which is used for both channels #0
and #1. If you want something that looks like an ordinary SuperBASIC interpreter, as seen at
boot time, the following program will do the trick - note that it needs SuperToolkit II:

100 OPEN #0;con : OPEN #1;con : OPEN #2; con
110 WMON 4

Removing a MultiBASIC
A MultiBASIC will remove itself if it encounters an error while reading a new command from its
primary command channel, #0. You can therefore get it to go away by typing CLOSE #0 at it.

Advanced use
For more advanced use, you can use QX or EX to pass channels and/or command string.
If the last character of the command string is the “ROM” marker (an exclamation mark) it is
removed from the string and the interpreter will start up with only the original ROM names,
instead of inherited names. The remaining command string is then scanned for the “file” marker
(a greater-than sign), and if it’s got it, the first part is opened as an input command channel, and
the rest is shuffled down.

The command string, what’s left of it, becomes the CMD$ variable in the interpreted basic.

Channels passed:

None: If no file marker in the command string, a single window is opened for
 both #0 and #1

One: Slotted in as both #0 and #1

Two: Become #0 and #1

More: First two become #0 and #1, #2 is missed out, and the rest go in as channels
 #3 onward.

01/24 39

E.g. A filter to replace strings in a file:

100 a$=’’:
110 i%=’/’ INSTR cmd$
120 IF i%THEN
130 a$=cmd$(i%+1TO)
140 cmd$=cmd$ (TO i%-1)
150 END IF
160 c%=LEN(cmd$)
170 REPeat lp1
180 IF EOF(#0) THEN EXIT lp1
190 INPUT#0,i$
200 IF c% THEN
210 REPeat lp2
220 i%=cmd$ INSTR i$
230 IF NOT i% THEN EXIT lp2
240 PRINT i$(TO i%-1);a$;
250 i$ = i$(i% + c% TO)
260 END REPeat lp2
270 END IF
280 PRINT i$
290 END REPeat lp1
999 IF VER$(-1) THEN POKE\48\0,-1

Save this in a file called flp1_c_bas, then use:

EX flp1_multi,flp1_in,flp1_out;’flp1_c_bas > fred/jim’

to convert all occurrences of fred in flp1_in to jim, writing the result to flp1_out.

Resident MultiBASIC
An additional MultiBASIC file is provided on the Minerva Utilities Disk (not supplied with
Minerva4Q68) MultiB_REXT which when loaded with LRESPR or the following:

base=RESPR(344) :LBYTES flp1_MultiB_rext,base :CALL base

will add the SuperBASIC extension MB which will invoke a new copy of the MultiBASIC job.
This is allows you to have MultiBASICs available without needing to EXEC them from a disk, but
it is not quite as convenient as having them resident on a hotkey.

The Minerva Utilities Disk may be found at https://dilwyn.qlforum.co.uk/qlrom/min198utils.zip

40 01/24

https://dilwyn.qlforum.co.uk/qlrom/min198utils.zip

operators

--
Operator Type Function

--
= floating string logical type 2 comparison
== numeric string almost equal ** (type 3 comparison)
+ numeric addition
- numeric subtraction
/ numeric division
* numeric multiplication
< numeric string less than (type 2 comparison)
> numeric string greater than (type 2 comparison)
<= numeric string less than or equal to (type 2 comparison)
>= numeric string greater than or equal (type 2 comparison)
<> numeric string not equal to (type 3 comparison)
& string concatenation
&& bitwise AND
|| bitwise OR
^^ bitwise XOR
~~ bitwise NOT
OR logical OR
AND logical AND
XOR logical XOR
NOT logical NOT
MOD integer modulus
DIV integer divide
INSTR string type 1 string comparison
^ floating raise to the power
- floating unary minus
+ floating unary plus

--
**almost equal - equal to 1 part in 107

If the specified logical operation is true then a value not equal to zero will be returned. If the
operation is false then a value of zero will be returned.

precedence The precedence of SuperBASIC operators is defined in the table above. If the
order of

evaluation in an expression cannot be deduced from this table then the relevant
operations are performed from left to right. The inbuilt precedence of

SuperBASIC
operators can be overriden by enclosing the relevant sections of the expression
in parentheses.

highest unary plus and minus
string concatenation
INSTR
exponentiation
multiply, divide, modulus and integer divide
add and subtract
logical comparison
NOT (bitwise or logical)
AND (bitwise or logical)

lowest OR and XOR (bitwise or logical)

01/24 41

pipe
virtual device
The PIPE virtual device is not associated with any physical hardware. PIPE devices are buffers
for storing information or passing it from one task to another. The PIPE is double ended: what
goes in one end, comes out the other in the same order (FIFO - first in first out).

The full syntax for the pipe device is now:

PIPE [IDin] [X|P|T] IDout [_[length]] [K]

IDin, IDout and length are all decimal values in the range -32768 to 32767 and if omitted, they
default to zero, with one exception. If one of "X", "P" or "T" is given, and IDin is present, and not
zero, IDout will default to (or a negative value be forced to) the same value as IDin.

If "K" is given, the "length" is multiplied by 1024 to give the actual length of pipe to be created.
(Note: the length of a pipe is the exact number of characters that it can have written into it
before it will be full, and need someone to start reading them out.)

Old style pipes
If none of "X", "P" or "T" is given, and IDin is omitted, or zero, the old style pipes are used.

Firstly a channel must be opened to write to the pipe, specifying a length greater than zero for
the length of the queue to be created. A second channel must then be opened to read from the
pipe, by giving a length less than or equal to zero, or omitted. The QDOS channel number of the
first channel must be passed in D3.w when the second channel is opened.

An aside: on a totally bare machine, it was just possible to connect up pipes, provided you didn't
mind losing one of #0, #1 or #2. e.g.

OPEN#2;'pipe_100' : OPEN_NEW#6;'pipe'

would work, as the open code IO.NEW is 2, and QDOS channel no 2 just happened to be
associated to #2.

The facility to specify long pipes via using "K" is available even on the old style pipes. Also, the
connection is much more thoroughly checked. Only one input channel at a time is permitted and
connecting input pipes to one another is rejected.

New style pipes
These come in when either IDin or IDout is non-zero.

The first channel opened to an "ID" must specify a length greater than zero for the length of the
queue (or queues) to be created. On any subsequent opens using this particular "ID", the length
is totally ignored.

There is no limit to the number of channels inputting from and/or outputting to the same ID pipe.

If IDout is zero (or omitted), and one of "X", "P" or "T" is given, the channel will be read-only.

If IDin is omitted, the channel will be write-only.

If both IDin and IDout are non-zero (or IDout was made to duplicate IDin, as described above),
the channel will provide data from IDin and data sent to it will go to IDout. The can be the same
"ID", in which case a single channel can be used as a "first in, first out" circular queue.

Normally, when the last channel capable of writing to an "ID" has been closed, the queue is
marked as at "end-of-file" and becomes anonymous. The "ID" is then available for re-use. When
there are no channels at all connected to an anonymous queue, any data still in it is lost and its
memory is returned to the system.

42 01/24

The "X" is just to separate IDin and IDout, but a "P" (permanent) will ensure that the pipe (or
both pipes) are preserved even if all channel connections are closed. A "T" (temporary) will
revert from this state.

Should one wish to open a channel to two distinct "ID"s, and want their lengths to be different,
one has to has to open a dummy channel to one of "ID"'s first, in order to define its length. The
required channel can then be opened to create the queue for the second "ID", and the dummy
channel is then closed. Alternatively, only a single channel need be used, if the "P" and "T" flags
are used. e.g.

OPEN#3;'pipe1p_100' : OPEN#3;'pipe1t2_20'

As a recommendation, a job which is creating pipes should incorporate its QDOS job number in
the "ID"s that it uses.

The suggested system is to use the hundred "ID"s starting at the jobs own job number times a
hundred. e.g.

 'pipe'&j&'12' where "j" is calculated by
j=VER$(-1) : j=j-INT(j/65536)*65536"
j=(PEEK_L(!!100) - PEEK_L(!!104))DIV 4)
or any other convenient way.

Throwaway pipe
"pipet" is a device which will permanently give "end-of-file" on reading and will discard any
output to it. Any number of channels may be open to this simultaneously.

Program pipe
"pipep" is device that is read-only, and contains a copy of MultiBasic, suitable for EXEC[_W] (or
anything else that likes a serial stream input with a proper header showing the type executable,
etc.) Any number of channels may be open to this simultaneously and they will each receive the
full data.

Some examples:

OPEN#3;'pipe2x1_100' : OPEN#4;'pipe1x2' : EXEC'pipep',#4

You can drive your own "floating" copy of SuperBasic by PRINTing commands to #3 and seeing
what comes back by INPUTing from the same #3.

A couple more examples:

PIPE1X_10 an input only pipe
PIPEX1_10 an output only pipe

A limited semaphore:

OPEN#3;'pipep1_10' : PRINT#3;'xy' : CLOSE#3

This has an initial value of three and a limit of 10. It can be useful for resource management,
etc. Any program can come along and obtain a unit with:

OPEN#3;'pipe1' : a$=INKEY$(#3) : CLOSE#3

To release a unit:

OPEN#3;'pipe1' : PRINT#3 : CLOSE#3

To finally discard the semaphore:

OPEN#3;'pipe1t ': CLOSE#3

01/24 43

pixel
coordinate
system
The pixel coordinate system is used to define the positions and sizes of windows, blocks and
cursor positions on the Q68 screen. The coordinate system has its origin in the top left hand
corner of the default window (or screen). The system will use the nearest pixel available for the
particular mode set making the coordinate system independent of the screen mode in use.

Some commands are always relative to the default window origin, e.g. WINDOW, while some
are always relative to the current window origin, e.g. BLOCK

The Pixel Coordinate System

44 01/24

(0,0) x (0,XLIM)

y

(YLIM,0)

program
An SuperBASIC program consists of a sequence of SuperBASIC statements, where each
statement is preceded by a line number. Line numbers are in the range of 1 to 32767.

--
Command Function

--
RUN start a loaded program
LRUN load a program from a device and start it

[CTRL] [SPACE] force a program to stop
--

syntax: line_number := *[digit]* {range 1..32767}

*[line_number statement *[:statement]*]*

example: i. 100 PRINT "This is a valid line number"
RUN

ii. 100 REMark a small program
110 COLOUR_QL
120 FOR foreground = 0 TO 7
130 FOR contrast = 0 TO 7
140 FOR stipple = 0 TO 3
150 PAPER foreground, contrast, stipple
160 CURSOR 0,70
170 FOR n = 0 TO 2
180 SCROLL 2,1
190 SCROLL -2,2
200 END FOR n
210 END FOR stipple
220 END FOR contrast
230 END FOR foreground
RUN

QDOS
QL
Minerva
The QDOS operating system is a predecessor of the Minerva operating system. QDOS was
originally used in the Sinclair QL computer. Circa 1983

The Sinclair QL used a version of BASIC known as SuperBASIC. The Minerva and it's
SuperBASIC are descendants of the QL SuperBASIC, and QDOS.

Minerva4Q68 includes all the QL SuperBASIC commands, and the commands which have been
provided to support the various add-on drivers. Minerva supports 99.9% of SuperBASIC.

Minerva is a QDOS like operating system that was developed as a replacement ROM for the
original QL computer. It included many improvements and bug fixes of the original Sinclair
ROM's.

01/24 45

qub
directory device
This device allows you to the read the first (!) partition of a container image file formatted the
Qubide way. Hence, each drive corresponds to one container file on the card, This is just like
the WIN drive. The purpose is mainly for you to be able to get data off the Qubide drive and
onto a proper WIN drive. You should not operate a Qubide type drive as your main storage
system, use the WIN drives for that..

So basically, this device behaves just like the WIN device, except that it uses different container
files.

The device is called QUB and there are 8 drives. Like the WIN device, you must indicate for
each drive the name of the container image file and the card it is on. Again, sensible names
have been preconfigured.

Assigning the QUB drives is done by using the Menu Config program on the Q68_ROM.SYS or
the Min4Q68_rext file. QUB drives cannot be assigned from within Minerva4Q68.

46 01/24

repetition
Repetition in SuperBASIC is controlled by two basic program constructs. Only the FOR
construct must be identified to SuperBASIC:

REPeat [identifier] FOR identifier = range
statements statements

END REPeat [identifier] END FOR [identifier]

These two constructs are used in conjunction with two other SuperBASIC statements:

NEXT [identifier] EXIT [identifier]

Processing a NEXT statement will either pass control to the statement following the appropriate
FOR or REPeat statement, or if a FOR range has been exhausted, to the statement following
the NEXT.

Processing an EXIT will pass control to the statement after the END FOR or END REPeat
selected by the EXIT statement. EXIT can be used to exit through many levels of nested repeat
structures. EXIT should always be used in REPeat loops to terminate the loop on some
condition.

A combination of NEXT, EXIT and END statements allows FOR and REPeat loops to have a
loop epilogue added. A loop epilogue is a series of SuperBASIC statements which are
executed on some special condition arising within the loop:

FOR identifier = for_list
statements exit

NEXT [identifier] next
epilogue

END FOR [identifier]

The loop epilogue is only processed if the FOR loop terminates normally. If the loop terminates
via an EXIT statement then processing will continue at the END FOR and the epilogue will not
be processed.

It is possible to have a similar construction in a REPeat loop:

 REPeat [identifier]
statements

IF condition THEN NEXT [identifier]
epilogue

END REPeat [identifier]

This time entry into the loop epilogue is controlled by the IF statement. The epilogue will or will
not be processed depending on the condition in the IF statement. A SELect statement can also
be used to control entry into the epilogue.

01/24 47

SDHC cards
The Q68 is supplied with two SD card slots. These slots should only be used with SDHC type
memory cards for mass storage in the Q68. Simple SD cards are not compatible.

The left card socket is socket 1, the one on the right is socket 2. Cards inserted into the left
socket are referred to as card1, the card inserted into the right socket will be referred as card2.

For the cards to be useful, they must be partitioned, and the first primary partition must be
formatted in the FAT32 format (this cannot be done on the Q68). The different files the Q68
needs must be put into that partition. This should be possible from any machine running an OS
that can read/write SDHC cards (Linux, Windows, macOs): just copy the files to the card.

The Q68 always tries to start up from card1, by loading the operating system from that card.
Once Minerva is loaded, it will follow its own usual boot process, normally running the boot file
found on win1_.

container files
The Q68 uses container files in the FAT32 partitions of SDHC cards to represent QDOS style
file systems. It supports the qxl.win and Qubide type container files.

The qxl.win type container files as used as the main mass storage devices in the Q68. These
files must lie in the first primary partition on the SDHC card, which must be formatted with a
FAT32 file system. Moreover, these container files must be located within the first 16 directory
entries of this FAT32 formatted partition. This is also true for the file containing Minerva itself.

Special precautions must be taken when writing the container and OS file(s) themselves to the
card. Indeed, Minerva expects a container file not to be fragmented in the FAT32 file structure. It
assumes that, once it has found the beginning of a container file, the rest of that container file
lies in contiguous sectors on the card. This is also true for the Minerva binary file (named
"Q68_ROM.SYS") itself. Thus the files on the cards must not be fragmented.

The best way to achieve this is to make sure that, before writing the Minerva binary file and the
container files, the card is freshly formatted. Then write each container (or other) file, one after
the other, immediately after formatting the card.

Hence, you should dedicate a card solely for the purpose of using it with the Q68.

Do not drag and drop several files onto the card at once.
Do not delete files from the card – always format it.

It is very much recommended that you read the section avoiding fragmentation to make sure
you treat the card as you should.

naming scheme
The file name of a container or OS file MUST be in "8.3" format, i.e. a name of 1 to 8 characters,
possibly followed by a decimal point and a three letter extension. Missing letters are filled up
with spaces. The name and extension must be in upper case and the extension, if present, must
be separated from the name by a period (".").

Please only use plain ASCII characters for the name and no accented characters, i.e. the letters
A-Z and numbers 0-9.

In all commands or configuration items where you must give or configure a name, Minerva tries
to help you as much as possible. Names are automatically converted into upper case and
correctly formatted, so that “qlwa.win” would automatically be converted to “QLWA .WIN”.
However, a “_” is not converted to a “.”.

48 01/24

initialising a card
With the Q68, before you can use drives on an SDHC card, the card must be initialised (it would
actually be more accurate to say that the card reader that a card is in must be initialised, i.e. put
in a state where it will read a card). Card1 is automatically initialised at boot time.

By design, card2 is not initialised at boot time, though this will depend on you configuration
options. If it is not initialised, you have to initialise it yourself. You can do this with the supplied
CARD_INIT command. The card itself is not touched by this command (it is not formatted,
written to or anything).

--
Command Function

--
CARD_INIT initialise the card reader

--

swapping cards
As a general rule, cards may be swapped in and out, even when the system is running, but this
is not a recommended practice. However, if you insist on doing this, you must be aware of a few
rules:

1 – Do not remove a card when there are files still open to a drive and certainly not whilst the
machine is reading/writing to a card. If you remove a card whilst there are still files open or files
being written, data loss WILL (not “may”) occur. Note that you will NOT be able to write the
missing data to the card even if you reinsert it immediately after having removed it from the
socket.

2 – When a card is removed from its socket, the card reader in that socket becomes
uninitialised. Before using the new card that you just inserted, you must initialise it, with
CARD_INIT as described above. This is true whether you insert a new card or re-insert the old
one that was just removed.

avoiding fragmentation
Minerva for the Q68 expects that all container files (i.e. files for WIN drives, and also for QUB
drives) lie in contiguous sectors on the SDHC card. If this is not the case, the file is said to be
“fragmented”. Fragmented files are deadly on the Q68 under Minerva: Minerva assumes that,
once it has found the beginning of a container file, the rest of that container file lies in
contiguous sectors on the card, and it will cheerfully write into those contiguous sectors which it
deems still belong to that file. If the file is fragmented, these contiguous sectors may not belong
to it but to another file, which will thus be irretrievably corrupted.

This is also true for the Minerva binary file (named "Minerva.bin") itself.

So, special precautions must be taken when writing the container and OS file(s) themselves to
the card. The best and recommended way to achieve this is to make sure that, before writing
the Minerva binary file and the container files, the card is freshly formatted. Then, one after the
other, write each container file to the card immediately after formatting the card.

Hence, you should dedicate a card solely for the purpose of using it with the Q68.

Note: practise has shown that in most cases it may not be necessary to reformat the card. You
could also delete every single file on the card before copying new files onto it. Under no
circumstances, however, should you only delete files selectively: this may leave “holes” in the
file allocation table and this lead to fragmented files (see below). However, the recommendation
still is to format the card and not just to delete all files from it.

When copying several files to the freshly formatted card, make sure that the copy process of
each file is finished before you start that for the next file. If not, it may happen that the two copy
processes write concurrently to the card, which could mean that the sectors for the two files
interleave. Depending on the operating system you use (linux, windows, mac os) if you drag
several files to the card at once, several concurrent copy processes might be started which
might lead to file fragmentation. So, to avoid this, just drag the files to copy one after the other.
01/24 49

Moreover, never just delete a single file -be it a container file or any other file- from the card, but
always format it (or at least delete ALL files from the card), and then write the files to the card
again: If you delete a single file from the card and later write another, bigger, container file to the
card, it is possible that part of this container file will lie in the sectors previously occupied by the
deleted file, and the rest in previously unoccupied sectors. This file would then be fragmented
and not lie in contiguous sectors on the card: a recipe for a disaster.

If a container file becomes fragmented, you WILL experience data loss, and other files on
the card might also be irrecoverably damaged!

summing up

The first primary partition on a SD card must be formatted as FAT32.

Container files, and the operating system, must be in the above FAT 32 partition.

There should not be more than 16 container files (including the operating system
container file) in the FAT 32 partition.

Files should be copied to the SD card one at a time.

Never delete container files, then copy more container files to the FAT32 partition of
the SD card. Copy the container files you wish to keep off of the SD card, Format it,
then copy the required container file back onto it.

50 01/24

OS and container filenames
There are several types of files that lie on an SDHC card during normal use of the Q68 with
Minerva. All of these must adhere to the 8.3 naming scheme as set out above.

 The Minerva file itself, a “naked” file, containing just Minerva itself.
In this case, the file MUST necessarily be called “Q68_ROM.SYS”.

 The WIN device container files.

These should be called QLWAx.WIN where x can be any number between 0 and
9999, or be omitted.

It is recommended, but not mandatory, that you stay with this naming scheme. Since
the names of the container files are configurable, you may basically call them
whatever you like, provided you adhere to the 8.3 naming rules.

 The QUB device container files.

These should be called QL_BDIx.BIN where x can be any number between 0 and
99. Again, it is recommended but not mandatory that you stay with this naming
scheme.

However, since the names of the container files are configurable, you may basically
call them whatever you like, provided you adhere to the 8.3 naming rules.

There again, a sensible default naming scheme has been devised:

QL_BDI.BIN on card1 for qub1_
QL_BDI.BIN on card2 for qub2_
QL_BDI3.BIN and QL_BDI4.BIN on card1 for qub3_ and qub4_.
QL_BDI5.BIN to QL_BDI8.BIN on card2 for qub5_ to qub8_.

Please remember that the qub device should not be your main storage system for
the Q68.

01/24 51

serial port support
From Minerva 4Q68 version 1.6 onwards, the Q68's serial port is supported using a new driver
in the ROM image. It offers the following features:

Configurable port name; default SER1 but can be changed using the SER_USE
command

Alternative port names for transmit- and receive-only channels (STXx/SRXx), for use
with SERnet

Baud rate configurable from 1200 to 230400 bits per second (using the normal
BAUD command)

Flow control using XON/XOFF protocol with optional data transparency (between
two Q68s or Q68 and QIMSI)

Configurable transmit- and receive buffers using SER_BUFF command

The Q68's serial port is much faster than the original QL's SER ports, but unfortunately lacks
CTS/RTS lines so all flow control has to be done in software using XON/XOFF handshake.

The original QDOS/Minerva driver has only fixed-size buffers of 81 bytes, which is not adequate
for handling high speeds. SMSQ/E, by contrast, has buffers of configurable size, and by default
uses dynamic-size transmit buffers which can grow to insane size (probably designed to send
files in quick succession to a printer). Unfortunately, all current versions of SMSQ/E do not
support the XON/XOFF protocol even though the driver accepts 'X' as option on channel opens
or as parameter to the SER_FLOW command, so sending or receiving files from or to the Q68
at full speeds will more or less lead to data corruption.
Reliable transfers are possible using SERnet (https://dilwyn.qlforum.co.uk/tk/sernet.zip; please
use v2.25 as v3 will not work with Minerva). When using default buffer size, it is not necessary
to enable XON/XOFF flow control, so specifying SRX1I/STX1I as device name will be sufficient.

Using SERnet, You are able to achieve throughputs up to 8.5K bytes at 115200 bps, which is
twice as fast as the original QLAN network.

Command Function

SER_USE substitute an existing SER port
SER_FLOW sets flow control
SER_BUFF sets buffer sizes
SER_ROOM sets the receive buffer's threshold for asserting flow control.
SER_CLEAR clears both input and output buffers

52 01/24

https://dilwyn.qlforum.co.uk/tk/sernet.zip

slicing
Under certain circumstances it is possible to refer to more than one element in an array i.e. slice
the array The array slice can be thought of as defining a subarray or a series of subarrays to
SuperBASIC. Each slice can define a continuous sequence of elements belonging to a
particular dimension of the original array. The term array in this context can include a numeric
array, a string array or a simple string.

It is not necessary to specify an index for the full number of dimensions of an array. If a
dimension is omitted then slices are added which will select the full range of elements for that
particular dimension, i.e. the slice (0 TO). SuperBASIC can only add slices to the end of a list of
array indices.

syntax: index := | numeric_exp {single element}
 | numeric_exp TO numeric_exp {range of elements}
 | numeric_exp TO {range to end}
 | TO numeric_expression {range from beginning}

array_reference := | variable
| variable ([index * [,index] *])

An array slice can be used to specify a source or a destination subarray for an assignment
statement.

example: i. PRINT data_array
ii. PRINT letters$(1 TO 15)
iii. PRINT two_d_array (3 , 2 TO 4)

String slicing is performed in the same way as slicing numeric or string arrays.

Thus
a$(n) will select the nth character.
a$(n TO m) will select all characters from the nth to the mth, inclusively
a$(n TO) will select from a the nth character to the end, inclusively
a$(1 TO m) will select from the beginning to the mth character inclusively
a$ will select the entire contents of a$

Some forms of BASIC have functions called LEFT$, MID$, RIGHT$. These are not necessary in
SuperBASIC. Their equivalents are specified below:

--
SuperBASIC Other BASIC

--
a$(n) MID$(a$,n,1)
a$(n TO m) MID$ (a$,n,m+1-n)
a$(1 TO n) LEFT$ (a$,n)
a$(n TO) RIGHT$ (a$,LEN(a$)+1-n)

--

warning: Assigning data to a sliced string array or string variable may not have the desired
effect. Assignments made in this way will not update the length of the string. The
length of a string array or string variable is only updated when an assignment is
made to the whole string.

01/24 53

Minerva
Minerva is an operating system based on QDOS, and supervises:

Task Scheduling and resource allocation
Screen I/O (including windowing)
Disk drive I/O
Serial channel communication
Keyboard input
Memory management

A full description of Minerva is beyond the scope of this guide but a brief description is included.

system calls
System calls are processed by Minerva in supervisor mode. When in supervisor mode,
Minerva will not allow any other job to take over the processor. System calls processed in this
way are said to be atomic, i.e. the system call will process to completion before relinquishing
the processor. Some system calls are only partially atomic, i.e. once they have completed their
primary function they will relinquish the processor if necessary. Unless specifically requested all
the system calls are partially atomic.

The standard mechanism for making a system call is by making a trap to one of the Minerva
system vectors with appropriate parameters in the processor registers. The action taken by
Minerva following a system call is dependent on the particular call and the overall state of the
system at the time the call was made.

input/output

Minerva supports a multitasking environment and therefore a file can be accessed by more than
one process at a time. The Minerva filing sub-system can handle files which have been opened
as exclusive files or as shared files. A shared file cannot be written to. Q68 devices are
processed by the serial I/O sun-system. The filing sub-system and the serial I/O sub-system
together make up the redirectable I/O system. As its name suggests any data output by this
system can be redirected to any other device also supported by the redirectable I/O system.

The device names required by Minerva are the same as the device names required by
SuperBASIC and are discussed in the concept section devices. The collection of standard
devices supplied with the Q68 can be expanded.

devices
The standard devices included in the system are discussed in this guide in the section devices.
Further devices may be added to the system, given a name (e.g. SER, WIN) and then accessed
in the same way as any other Q68 device.

multitasking
Jobs will be allowed a share of the CPU in line with their priority and competition with other jobs
in the system. Jobs running under the control of Minerva can be in one of three states:

active: Capable of running and sharing system resources. A job in this state
may not be running continuously but will obtain a share of the CPU in
line with its priority.

suspended: The job is capable of running but is waiting for another job or I/O. A job
may be suspended indefinitely or for a specific period of time.

inactive: The job is incapable of running, its priority is 0 and so it can never
obtain a share of the CPU

Minerva will reschedule the system automatically at a rate related to the 50 Hz frame rate. The
system will also be rescheduled after certain system calls.

54 01/24

example: This program generates an on-screen readout of the real-time clock, running as an
independent job.

First RUN this program with a formatted disk in floppy drive 1. This generates a
machine code title called 'clock'. Wait for the drive to stop.

Then type:

EXEC flp1_clock

and a continuous time display will appear at the top right of the command window.

100 c=RESPR(100)
110 FOR i = 0 TO 68 STEP 2
120 READ x : POKE_W i+c,x
130 END FOR i
140 SEXEC flp1_clock,c,100,256
1000 DATA 29439,29697,28683,20033,17402
1010 DATA 48,13944,200,20115,12040
1020 DATA 28691,20033,17402,74,-27698
1030 DATA 13944,236,20115,8279,-11314
1040 DATA 13944,208,20115,16961,16962
1050 DATA 30463,28688,20035,24794
1060 DATA 0,7,240,10,272,200

N.B. Line 1060 governs the position and colour of the clock window - the data terms are, in
order:

border colour/width, paper/ink colour, window width, height, x-origin, y-origin

These are pairs of bytes, entered by POKE_W as words.

The x-origin and the y-origin (the last data item) should be 272 and 202 in monitor mode.

Generate the paper and ink word, for example, as 256*paper+ink. Thus white paper, red ink is
256*7 + 2 = 1794

sound
Currently, sound is not supported by Minerva4Q68. It may be incorporated at a later date.

01/24 55

start up
Immediately after starting or resetting, Minerva will display the start up screen.

Pressing F1 will take you to Monitor mode (4 colours), and F2 will take you to TV mode (8
colours).

Pressing F3 or F4 will make Minerva restart as above, but with the second screen enabled.
This also moves the system variables, which may cause problems for badly behaved software
that assume where the system variables are located.

Pressing SHIFT and a function key will cut the amount of available memory to 128K, the same
as an unexpanded QL.

Pressing CTRL and a function key omit the extension ROM scanning. Avoid using this, as you
will loose the WIN, QUB and SER devices, and the keyboard.

After pressing F3 or F4, pressing the screen switch key CTRL-TAB should now give you a
blank screen instead of the pretty coloured dots and things that appear when you screen switch
on a single screen Minerva.

auto-start
If you don't press F1 or F2 within fifteen seconds of the boot screen appearing, the system will
start anyway, pretending that you've Just pressed the F1 key.

After pressing a function key, or auto-start, the monitor or TV screen is displayed.

The Minerva has the ability to 'boot' itself up from programs contained in win1_. If it contains a
file called BOOT it is loaded and run.

56 01/24

 1 & 2

 0

default screen
The Q68 has three default channels which are linked to three default windows.

Monitor Television

Channel 0 is used for listing commands and error messages, channel 1 for program and
graphics output and channel 2 for program listings. The default channel can be modified using
the optional channel specifier in the relevant command.

01/24 57

2 1

0

statement
An SuperBASIC statement is an instruction to the Q68 to perform a specific operation, for
example:

LET a = 2

will assign the value 2 to the variable identified by a.

More than one statement can be written on a single line by separating the individual statements
from each other by a colon (:), for example:

LET a = a + 2 : PRINT a

will add 2 to the value identified by the variable a and will store the result back in a. The answer
will then be printed out

If a line is not preceded by a line number then the line is a direct command and SuperBASIC
processes the statement immediately. If the statement is preceded by a line number then the
statement becomes part of a SuperBASIC program and is added into the SuperBASIC program
area for later execution.

Certain SuperBASIC statements can have an effect on the other statements over the rest of the
logical line in which they appear i.e. IF, FOR, REPeat, REM, etc. It is meaningless to use
certain SuperBASIC statements as direct commands.

string arrays
string variables
String arrays and numeric arrays are essentially the same, however there are slight differences
in treatment by SuperBASIC. The last dimension of a string array defines the maximum length
of the strings within the array. String variables can be any length up to 32766. Both string arrays
and string variables can be sliced.

String lengths on either side of a string assignment need not be equal. If the sizes are not the
same then either the right hand string is truncated to fit or the length of the left hand string is
reduced to match. If an assignment is made to a sliced string then if necessary the 'hole' defined
by the slice will be padded with spaces.

It is not necessary to specify the final dimension of a string array. Not specifying the dimension
selects the whole string while specifying a single element will pick out a single character and
specifying a slice will define a sub string.

comment: Unlike many BASICs SuperBASIC does not treat string arrays as fixed length
strings. If

the data stored in a string array is less than the maximum size of the string array
then the length of the string is reduced.

warning: Assigning data to a sliced string array Or string variable may not have the desired
effect. Assignments made in this way will not update the length of the string and so it
is possible that the system will not recognise the assignment. The length of a string
array or a string variable is only updated when an assignment is made to the whole
string.

--
Command Function

--
FILL$ generate a string
LEN find the length of a string

--

58 01/24

string
comparison

order . (decimal point/full stop)
digits or numbers in numerical order
AaBbCcDdEeFfGgHhIiJjKkLlMmNnOoPpQqRrSsTtUuVvWwXxYyZz
space ! " # $ % & ' () * + , - . / : ; < = > ? @ [|] ^ _ / { | } ~ ©
other non printing characters

The relationship of one string to another may be:

equal: All characters or numbers are the same or equivalent

lesser: The first part of the string, which is different from the corresponding
character in the second string, is before it in the defined order.

greater: The first part of the first string which is different from the corresponding
character in the second string, is after it in the defined order.

Note that a '.' may be treated as a decimal point in the case of string comparison
which sorts numbers (such as SuperBASIC comparisons). Note also that
comparison of strings containing non-printable characters may give unexpected
results.

types of comparison
type 0 case dependent - character by character comparison

type 1 case independent - character by character

type 2 case dependent - numbers are sorted in numerical order

type 3 case independent - numbers are sorted in numerical order

type 0 not normally used by the SuperBASIC system.

Usage type 1 File and variable comparison
type 2 SuperBASIC <, <=, =, >= ,>, INSTR and <>
type 3 SuperBASIC == (equivalence)

01/24 59

syntax
definitions
SBASlC syntax is defined using a non-rigorous 'meta language' type notation. Four types of
construction are used :

| | Select one of
[] Enclosed item(s) are optional
* * Enclosed items are repeated

.. Range
{ } Comment

e.g. | A | B | A or B
[A] A is optional
* A * A is repeated
A..Z A, B, C, etc
{this is a comment}

Consider a SuperBASIC identifier.

A sequence of numbers, digits, underscores, starting with a letter and finishing with an optional
% or $

letter := | A..Z
| a..z

{a letter is one of: ABCDEFGHIJKLMNOPQRSTUVWXYZ}
or abcdefghijklmnopqrstuvwxyz

digit := | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |

{a digit is 0 or 1 or 2 or 3 or 4 or 5 or 6 or 7 or 8 or 9}

underscore := _
{an underscore is _ }

identifier := letter * [letter | digit | underscore] * | % | $ |
------- --------------------------------------

must start a sequence of letters
with a letter digits and underscores

i.e. repeat something
which is optional

60 01/24

turtle
graphics
SuperBASIC has a set of turtle graphics commands:

Command Function

PENUP stop drawing
PENDOWN start drawing
MOVE move the turtle
TURN turn the turtle
TURNTO turn to a specific heading

The set of commands is the minimum and normally would be used within another procedure to
expand on the commands. For example:

100 DEFine PROCedure forward(distance)
110 MOVE distance
120 END DEFine
130 DEFine PROCedure backwards(distance)
140 MOVE -distance
150 END DEFine
160 DEFine PROCedure left(angle)
170 TURN angle
180 END DEFine
190 DEFine PROCedure right(angle)
200 TURN -angle
210 END DEFine

These will define some of the more famous turtle graphic commands.

Initially the turtle's pen is up and the turtle is pointing at 00, which is to the right hand side of the
window.

The FILL command will also work with figures drawn with turtle graphics. Also ordinary graphics
and turtle graphics can be mixed, although the direction of the turtle is not modified by the
ordinary graphics commands.

01/24 61

win
hard disk
directory device
Hard disk drives on the Q68 are large container files stored on an SDHC card. The files usually
have the suffix “.WIN” but anything else is fine, too.

The corresponding Minerva device is called "WIN" and, potentially, you may have up to 8
different drives for this device, called "win1_" to "win8_".

The name and directory can be configured separately in the Menu Config program.

Each WIN drive can point to one container file lying indiscriminately on SDHC card one or two.

For each WIN drive, you must set the name of the container file, and the number of the card on
which this file is to be found. You may do so by configuring this with the standard Menu Config
program.

safety precaution
Do not point two different WIN drives to the same container file on the same card. For the time
being, the system doesn't stop you from doing so, but data loss and file corruption WILL (not
"can") occur as a result!

62 01/24

windows
Windows are areas of the screen which behave, in most respects, as though each individual
window was a screen in its own right, i.e. the window will scroll when it has become filled by
text, it can be cleared with the CLS command, etc.

Windows can be specified and linked to a channel when the channel is opened. The current
window shape can be changed with the WINDOW command and a border added to a window
with the BORDER command. Output can be directed to a window by printing to the relevant
channel. Input can be directed to have come from a particular window by inputting from the
relevant channel If more than one channel is ready for input then input can be switched between
the ready channels by pressing

[CTRL] C

The cursor will flash in the selected window

Windows can be used for graphics and non-graphic output at the same time. The non graphic
output is relative to the current cursor position which can be positioned anywhere within the
specified window with the CURSOR command and at any line-column boundary with the AT
command. The graphics output is relative to a graphics cursor which can be positioned and
manipulated with the graphics procedures.

parts
Certain commands (CLS, PAN etc.) will accept an optional parameter to define part of the
current window for their operation. This parameter is as defined below:

part description

0 whole screen
1 above and excluding cursor line
2 bottom of screen excluding cursor line
3 whole of cursor line
4 line right of and including cursor

Command Function

WINDOW re-define a window
BORDER take a border from a window
PAPER define the paper colour for a window
INK define the ink colour for a window
STRIP define a strip colour for a window
PAN pan a window's contents
SCROLL scroll a window's contents
AT position the print position
CLS clear a window
CSIZE set character size
FLASH character flash
RECOL recolour a window

01/24 63

64 01/24

A
ARC...35
Arrays..3

slicing...53
storage..3
strings...58

B
BASIC...4
Baud rates..17
Booting..56
Break...4

C
Changes...

keyboard..36
Channels..5
Character set..7
Circles..34, 35
Clock...13
Close channels...5
Codes...

characters...7
colour...15

Coercion..14
Commands...

direct..24
keywords..38
turtle graphics..61
windows...63

Communications..
channels...5

Comparisons..59
Console device..21
Control characters...7
Conversion..14
Coordinates..

graphics..34
pixel...44

Cursor..35

D
Data...

structures..3
Data storage...

arrays...3
Date...13
DEFine FuNction..33
DEFine PROCedure..33
Devices..20

console (con)..21
hard disk (win).......................................23, 62
pipe..22, 42
qub...23
serial (ser)..17

Dimension...3
Direct command..24
Directory devices...24

QUB...46

Display modes...25
DTR...17
Dual screens..26

E
Elements..3
Error handling...27, 28

WHEN ERRor...28
Error recovery...28
Error reporting...28
EXIT..47
Expressions..31

F
File types...32
Filename..20, 36
Files...32
Filling shapes...35
FOR...47
Functions...33

G
GND..17
Graphics..34, 44

display modes..34
turtle...61

H
Handshaking..18
Hex codes..7
High resolution mode..25

I
I/O..

devices...20
Qdos...45
windows...63

Identifiers..36
Initalisation..58
Input..

channels...5
devices...20
windows...63

K
keyboard..36

changes..36
compose characters......................................37
conventions..7

Keyword..38

L
Line numbering...45, 58

direct commands..24
Lines..35

01/24 65

Local variables..33
Loops...47

M
Maths functions...38
Minerva...45
MultiBASIC..39

advanced use..39
removing a MultiBASIC.............................39
resident MultiBASIC...................................40

Multitasking..54

N
Name...36
NEXT..47

O
OPEN..5
Operating system...45, 54
Operators...41
Ordering..

coercion...14
precedence...41

Output..
channels...5

P
Parameters...33
Pictures..34
Pipe device..22, 42
Pipes..

new style pipes...42
old style pipes..42
program pipe..43
throwaway pipe..43

Pixel coordinates...44
Points...35
Power up..56
Precedence...41
Procedure...33
Programs..45

Q
Qdos..45
QL..45
QUB disk...46

R
Repetition..47
RS-232-C...17
RTS..17
RXD..17

S
Scaling...34, 35

Screen..
colours...15
con...21
display modes..25
dual screen...25
dual screens..26
high resolution mode...................................25
scr...21
windows...63

SD cards..
avoiding fragmentation................................49
container files..48
initialising a card...49
naming scheme..48
OS and container filenames.........................51
summing up...50
swapping cards..49

SDHC cards...48
SER..21
Serial communications......................................17

SER_BUFF..52
SER_FLOW...52
SER_USE..52
serial port support..52
signals..17

Slicing..53
Smsq/e...54
Sound...55
SRX...21
Start up..56

auto-start..56
default screen...57

Statement...58
Stipples..16
Strings..

arrays...58
comparisons...59
slicing...53
variables...58

STX...22
Switching on..56
Syntax definitions..60

T
Time..13
Trig functions..38
Turtle graphics...61
TXD...17
Type conversion..14

V
Variables..

local...33

W
WHEN ERRor...28
Winchester hard disk...................................23, 62
Windows..63

66 01/24

01/24 67

