
 Principles of programming

 Control

 Conventional imperative languages such as Fortran, Cobol
and Pascal rely heavily on the use of iterative constructs for
evaluation. Functional programming style relies heavily on the
use of recursion. Almost everyone has met the factorial
function:-

 fact n is defined as {Factorial}
 if n = 0
 then 1
 else n * fact (n-1)

 Other examples are:-

 add x y is defined as {Addition}
 if x = 0
 then y
 else add (x-1) (y+1)

 fib n is defined as {Fibonacci function}
 if n = 0 then 1
 else if n = 1 then 1
 else fib (n-1) + fib (n-2)

 mult x y is defined as {Multiplication}
 if x = 0
 then 0
 else y + mult (x-1) y

 div x y is defined as {Integer division}
 if x < y
 then 0
 else 1 + div (x-y) y

 rem x y is defined as {Remainder}
 if x < y
 then x
 else rem (x-y) y

 gcd x y is defined as {Greatest-Common-Divisor}
 if x = y
 then x
 else if x > y
 then gcd (x-y) y
 else gcd y x

 page 6

 Principles of programming

 All of the examples given so far are of self-recursion. In

this form of recursion a function may call itself. It is also
possible for functions to be mutually recursive. Mutually
recursive functions are functions which call each other. To
illustrate this, modify the gcd function:-

 gcd1 x y is defined as
 if x = y then x
 else gcd2 x y

 gcd2 x y is defined as
 if x > y
 then gcd1 (x-y) y
 else gcd2 y x

 In this example, gcd1 and gcd2 are mutually recursive. Note
also that gcd2 is also self-recursive.

 In many programming languages allowing recursion it is
necessary to define mutually recursive functions in a special
way. This is essential if functions can only be defined in
terms of already existing functions. In the gcd1/gcd2 example,
it is not possible to define gcd1 first because gcd2 is not
defined - similarly it is not possible to define gcd2 first.
Simultaneous definition seems to be the only way out! In ML
functions which are to be defined simultaneously are defined
with the 'and' keyword separating them:-

 fun gcd1 x y = if x = y
 then x
 else gcd2 x y

 and gcd2 x y = if x >y
 then gcd1 (x-y) y
 else gcd2 y x;

 In some languages, definitions of self-recursive functions
will also need special treatment, as a function definition may
only be made available to the language system for use once it
has been defined.

 It is important to note that recursive functions must
include at least one conditional test within the recursive
function set in order to avoid a non-terminating computation:

 funny1 x is defined as 1 + (funny2 (x+1))

 funny2 x is defined as 2 * (funny1 (x*3))

 Attempting to use either funny1 or funny2 will cause a
failure due to non-termination.

 page 7

 Principles of programming

 page 8

