

 Sinclair QL Exploring 3D Rotation Graphics

 Sinclair QL Exploring 3D Rotation Graphics

.

QBITS Exploring QL 3D Rotation Graphics

Page 1

QBITS on Animation

Magic Lanterns with flickering cards, later replaced with photography pictures

all were used to create the illusion of movement. The first motion sequence

photographed in real-time was created in 1878 by British photographer

Eadweard Muybridge. W. K. L. Dickson an Edison employee developed the

Kinetoscope (a peep-hole motion picture viewer) introduced at the Chicago

World Fair of 1893. The Lumiere brothers made the first public screening of ten

short films in 1895 and as they say the motion picture industry was born.

In much the same way the availability of home computing in the 1980’s sparked

myself and others interest in creating computer generated moving graphics,

especially when it involved the manipulation of 3D images.

QBITS 3D Graphics

Unfortunately back in my early days of programming with QL SuperBASIC,

such things as 3D Rotation Graphics was a little out of my league and probably

still is. However I did jot down some notes amongst my future aspirations.

So having involved myself with QL SuperBASIC again I thought it was time to

give 3D Rotation Graphics a bit of a spin (sorry for the pun). However what

exactly was my goal. One was the basic code for revolving a simple object such

as a wireframe Cube in various directions, moving it about the screen, altering

its global position and being able to zoom in and out. Create the illusion of

perspective perhaps, something to do with focal scale, but more about that later.

As an afterthought a finishing touch would be filling in each enclosed area of

my wire frame to create a solid object.

Depending on what source you refer to or your own background you might

come across a few variation on the terms used for 3D movement. The most

common are Roll, Pitch, Yaw associated with flying. However there are others,

Rotate, Circulate Orbit, Spin, Loop. For my 3D Rotation Graphics I decided on

Loop, Spin & Roll. All just happen to be four letter words, a little conformity in

computer programming always a good thing.

https://en.wikipedia.org/wiki/Eadweard_Muybridge

QBITS Exploring QL 3D Rotation Graphics

Page 2

Exploring 3D Rotation Graphics

So where to start... with a two dimensional object, its outline points of reference

are depicted by xy coordinates. Moving position, alters what is displayed, but is

achieved by changing the xy coordinates by an equal number of x points across

the screen (left to right) and by the number of y points (up or down) the screen.

When an object is moved to a new position, without changing its shape or size,

this is a translation.

A three dimensional object requires a third coordinate, usually assigned as z. So

first objective was to explore this z coordinate and its association with x and y.

3D rotation changes the orientation within each of its relative planes. The

transformation alters the shape and size viewed. So what is involved in sorting

out this change in coordinate values on a 2D screen? Just the sort of thing to

send many a programmer, myself included, into a mental meltdown.

Imaginary Eye View

Looking at a flat screen it is easy enough to imaging the x, y coordinates. For

three-dimensional space, we need to look at points that lie in front and behind the

screen. To do this our imagine of a cube is half stuck out from the front of the

screen surface, the other half lying behind. Looking face on to the screen, you

see a square, when you stand over the screen and look straight down you also see

a square (half poking out the front, half poking out the back). Looking directly

from left or right of the screen, again you see a square half out the front and half

out the back

QBITS Exploring QL 3D Rotation Graphics

Page 3

xyz Coordinate Relationship
Understanding the relationship between xyz planes to identify location points of

an Object is the key to 3D rotation. The three drawings shown here represent

one Node and its position relative to the three planes of Roll, Spin, and Loop. I

hope that the diagrams will go some way to revealing the illusion of 3D

graphics when viewed on a 2D screen.

Roll

A Node rotating on the Z Axis is as

if looking directly at the screen it

moves around the four quadrants of

the x y coordinates.

As shown its starting position is in

the first quadrant (0 to 90 degrees).

Spin

A Node rotating on the Y Axis is as

if looking down from above. It

moves around the four quadrants of

the zx axis. This also shows its

relationship.

The starting position is not perhaps

what you were expecting, as it now

lies in the fourth quadrant (270 to

360 degrees).

Loop

A Node rotating on the X Axis is as

if looking at it from the side as it

moves around the quadrants of the

zy axis.

The vector position of the Node now

appears to lie in the second quadrant

(90 to 180 degrees).

On each plane if we refer to the centre of our object as 0,0 then revolving

around it in the first quadrant 0-90 degrees we have +x,+y. In the second 90 to

180 degrees we have –x, +y. In the third 180 to 270 degrees -x, -y and finally in

quadrant four 270 to 360 (and back to 0) degrees we have +x,-y.

QBITS Exploring QL 3D Rotation Graphics

Page 4

Initialising Node xyz coordinates

Each point of reference that connects a 3D object be it a simple cube or

multisided polyhedron I refer to as a Node. These points of reference (Nodes)

create the coordinates to draw a wireframe Cube as they are referenced to its

own plane. The centre of the Cube is given as a global x,y position. Node (1)

can then be expressed on the X axis as +10 from gy. For the Y axis as it is above

gx and an even distance again +10. Looking down from above we can also see it

lies in front of the screen on the Z axis, this places the front of the object closer

to us so here we can give it a value of -10.

 DATA 8 :REMark Number of Nodes

Node(1) xyz is 10, 10,-10 DATA 10, 10,-10

Node (2) xyz is -10, 10,-10 DATA -10, 10,-10

Node (3) xyz is -10,-10,-10 DATA 10,-10,-10

Node (4) xyz is 10,-10,-10 DATA 10,-10,-10

Node (5) xyz is 10, 10, 10 DATA 10, 10, 10

Node (6) xyz is -10, 10, 10 DATA -10, 10, 10

Node (7) xyz is -10,-10, 10 DATA -10,-10, 10

Node (8) xyz is 10,-10, 10 DATA 10,-10, 10

As a set of DATA lines the above can be fed into an Array to keep the basic

configuration information. This will apply to not only our Cube but with any

polyhedron constructed with multiple Nodes.

 DIM x(n),y(n),z(n) where n is the number of Nodes of our polyhedron.

QBITS Exploring QL 3D Rotation Graphics

Page 5

Vector Calculations

A Vector is described as a distance in a particular direction. For our purposes

this represents the lines drawn between Nodes to present our object in a wire

framework. Vectors are calculated as an xy screen coordinate derived from a

Global xy at the centre of our object and each Node xyz coordinate.

To create our 3D Object we use trigonometry to find the position of a rotating

point (x y) set around a central origin at a distance (r) and by degrees (a).

x = r × COS(a)

y = r × SIN(a)

If we then rotate further the angle to b:

x' = r × COS(α + b)

y' = r × SIN(α + b)

By using trigonometric addition of each equation:

x' = r × COS(a) COS(b) - r × SIN(a) SIN(b)

y' = r × SIN(a) COS(b) + r × COS(a) SIN(b)

Then substituting in the values for x and y above, we get an equation for the

new coordinates as a function of the old coordinates and the angle of rotation:

x' = x × COS(b) - y × SIN(b)

y' = y × COS(b) + x × SIN(b)

The above describes one plane we have three XYZ. For now we can combine

the required function for COS and SIN of the angle to be used with each plane:

ra=+.5 : c = COS(ra) : s = SIN(ra)

Then the code for position in each plane is as follows:

yt = y : y = c x yt – s x z : z = s x yt + c x z X axis (y, z planes)

xt = x : x = c x xt + s x z : z = s x xt + c x z Y axis (x, z planes)

xt = x : x = c x xt – s x y : y = s x xt + c x y Z axis (x, y planes)

Where yt, xt hold the previous x, y coordinate values. The x y z are updated

with new values. Following this the 3D coordinates are transposed into 2D

screen positions with the following:

vx = gx + (x(n) x fs) / (z(n) + fs)

vy = gy + (y(n) x fs) / (z(n) + fs)

Where gx,gy are the global coordinates and fs is a scale factor that determines

how much we have zoomed in or out from an imaginary focal point.

The above calculations for each Nodes vx(n) and vy(n) screen coordination can

be set within a FOR loop and stored in a Dimentioned Array.

DIM vx(n),vy(n) where n is the same as the number of Nodes

QBITS Exploring QL 3D Rotation Graphics

Page 6

QB3D Nodes, Vectors & Frames

Displaying our Cube we might begin by reviewing its components. A Cube has

eight coordinate points (Nodes) and six sides (Frames). As with any polyhedron

we will need to identify the number of Nodes, their xyz values from which we

can then calculate (Vector) values vx,xy for the 2D screen coordinates. Once we

have these we can go on to work out each Frames group of coordinates. As a

Frame is by definition a closed area we also have the option to leave unfilled as a

wireframe or colour fill it to create a solid Object.

QB3D Screen Display

As already stated a Frame is a surface area contained within a set of linked

Nodes. What is needed is a Data set to identify which group of linked Nodes

encloses each area. Then the SuperBASIC LINE function can be used to draw

the shape of each to construct a wireframe of the Object.

 vres DATA 6

Frame (1) Vector 1 to 2 to 3 to 4 ink DATA 1,2,3,4, 4

Frame (2) Vector 1 to 2 to 3 to 4 ink DATA 1,4,8,5, 240

Frame (3) Vector 1 to 2 to 3 to 4 ink DATA 4,3,7,8, 240

Frame (4) Vector 1 to 2 to 3 to 4 ink DATA 3,2,6,7, 240

Frame (5) Vector 1 to 2 to 3 to 4 ink DATA 2,1,5,6, 240

Frame (6) Vector 1 to 2 to 3 to 4 ink DATA 5,6,7,8, 2

RESTORE vres :READ vn :INK bg1
FOR lp=1 TO vn
 READ a,b,c,d,i:
 LINE vx(a),vy(a) TO vx(b),vy(b) TO vx(c),vy(c) TO vx(d),vy(d) TO vx(a),vy(a)
END FOR lp

A FOR loop with READ function to call upon the lines of DATA provides the

instruction set to build our wireframe Cube. At the end of each line of DATA I

have added a fifth value this I use to set the ink colour for each Frame. By

adding a FILL command to our FOR loop the area within a Frame can be colour

filled to make our 3D wireframe look like a solid Object.

RESTORE vres :READ vn
FOR lp=1 TO vn
 READ a,b,c,d,i
 IF cset=1 :INK bg2 :FILL 0 :ELSE INK i :FILL 1:PAUSE 5
 LINE vx(a),vy(a) TO vx(b),vy(b) TO vx(c),vy(c) TO vx(d),vy(d) TO vx(a),vy(a):FILL 0
END FOR lp

The If statement here allows the colour setting cset to be turned On/Off

switching between wireframe and solid Object. bg2 is the default ink colour.

QBITS Exploring QL 3D Rotation Graphics

Page 7

QB3D Frame FILL Drawbacks

Manipulating solid objects in three dimensions can take a lot of computing

power. While in static mode my FILL command fills each frame in sequence

from an instruction set, in this case the same ordered list that applies to write the

wireframes. The sequence was chosen so those frames out of view are filled first

with the later ones covering the viewed surfaces last. The problem is as the

Object is rotated away from this initial settings in any of its three planes then the

Frames hidden and those in front will change.

The examples of Frame FILLs on the right are taken

from my listed sequence. Those above are Fills after

random rotational changes have taken place. As you can

see the problem is matching sequence with image

displayed. To identify Frames surfaces to be filled as the

object rotates in any of the three planes is another ball

game and beyond the scope of this my entry level of

Exploration into QL 3D Rotation Graphics.

Note: Although I have chosen to use quadrilaterals as my standard Frame I’m

led to believe the gaming industry reduces all their Frames to triangles.

QBITS 3D Programs

This code has been developed using QL2K and SMSQ emulators running under

Windows 7. There are four programs, the first is initial trial of xyz rotation code.

The second and third are the Wireframe programs with commands that allow

manipulation of parameters controlling various aspects of movement, size and

perspective. The fourth provides Node and Frame Data to configure three

Objects, a Cube, a Hexagon shape and my attempt at a Space a Shuttle.

QB3D_Cube Basic code to rotate a Cube.

QB3D_Wire512 Program for standard QL 512x256 screens.

QB3D_Wire768 for the SMSQ 768x512 screen and 16 bit colour.

QB3D_Data1 Data coding for Cube, Hexagon, Shuttle

QBITS Exploring QL 3D Rotation Graphics

Page 8

QBIT 3D Movement

Movement is accomplished in a number of ways; movement across the screen is

repositioning the Objects global xy coordinates. This is achieved by use of the

cursor keys changing the gx,gy values. Rotary movement is a change of angle in

one of the three planes xy, zy, zx Roll/Spin/Loop. Pressing any of the zZxXyY

keys alters the angle for its corresponding plane. These are processed by the

Procedure Obj_Calc.

280 DEFine PROCedure Obj_Calc
282 cx=COS(rx):sx=SIN(rx)
284 cy=COS(ry):sy=SIN(ry)
286 cz=COS(rz):sz=SIN(rz)
288 FOR np=1 TO no
290 yt=y(np):y(np)=cx*yt-sx*z(np):z(np)=sx*yt+cx*z(np)
292 xt=x(np):x(np)=cy*xt+sy*z(np):z(np)=sy*xt+cy*z(np)
294 xt=x(np):x(np)=cz*xt-sz*y(np):y(np)=sz*xt+cz*y(np)
296 vx(np)=gx+(x(np)*fs)/(z(np)+fs)
298 vy(np)=gy+(y(np)*fs)/(z(np)+fs)
300 END FOR np
302 END DEFine

Part of this calculation is the Focal scale (fs). Imagine a large building from a

distance its shape is fairly uniform. Standing at one corner, the height above us

as opposed to the height of the building further down the street appears out of

proportion to is true measurement. This is what we understand as perspective,

the appearance of things relative to one another as determined by their distance

from the viewer and is the technique of representing three-dimensional objects

on a two-dimensional surface.

Using keys D or I, fs can be Decreased or Increased between 80 and 800. If you

reduce the fs value below 80 the image distorts and becomes a little weird. The

affect of fs at its lower vales also slightly enlarges the Object. However for

better control of Object size I decided to added a Vector Size option.

QB3D Vector Size

To avoid the obvious distortion of fs this led me to look for a way to Enlarge or

Reduce an Objects size. The process of reading and storing Nodes xyz values

gave me the idea of adding a multiplier to the xyz value and thereby being able

to expand or reduce an Objects size in a uniform manner. The vector size vs is

simply that with a range from 0.5 to 1.5 in 0.1 increments.

292 DEFine PROCedure Obj_Array
294 LOCal lp,a,b,c :RESTORE nres :READ no
296 FOR lp=1 TO no
298 READ a,b,c :x(lp)=a*vs:y(lp)=b*vs:z(lp)=c*vs
300 END FOR lp
302 END DEFine:

QBITS Exploring QL 3D Rotation Graphics

Page 9

QB3D Frame FILL

The F key toggles On/Off Frame FILL. On loading the sequence is set so those

Frames in the forefront will be filled last. Unfortunately if the Object has been

rotated on any planes since being loaded the Frames FILL action may not give

the outcome you were expecting. That is to say the order of overlap for filling

Frames may not be the forefront ones last.

QB3D Background

While deciding on useful things for the program it occurred to me that a user

might prefer a Black or White background. Pressing B or W changes the colour

of PAPER (bg1) and INK. (bg2) either a Black background with white INK, or

White background with black INK.

QB3D Node ID

It would seem illogical to not include the ability to identify the Nodes of an

Object. Pressing key N toggles On/Off nset, which adds printing the Node ID’s

as part of Obj_Draw. For this I make use of the CURSOR graphics coordinate

system:

 IF nset=1 :CURSOR vx(n),vy(n),-2,2 :PRINT n (n being the Node number)

Note:

Using the xXyYzZ keys as expected will Loop/Spin/Roll respectively.

However, once an Object has been rotated especially in the Roll (xy plane) then

Loop (xX) key and/or Spin (yY) key commands can act differently.

QB3D QL Platforms

The QB3D_Wire512 Mode 4 screen 512x256 was loaded and run, be it too

slow for any real sort of performance on a QemuLator in basic QL speed with

128k memory. Not sure why but the background colour overwrite appeared not

to clear all of the previous wireframe.

QB3D_Wire512 runs OK with the QL2K or SMSQ emulators. But by far the

smoothest is the QB3D_Wire768 version developed on the SMSQmulator.

This takes advantage of the greater screen size and 16bit colour.

QB3D Future Thoughts
It would be nice to be able to Frame FILL with the forefront frames filled last

whatever the Objects rotated position and so move and rotate the Object as a

solid image. I guess a Companion Program to construct Wireframe Objects and

generate their Node, Vector and Frame DATA lists would be useful.

QBITS Exploring QL 3D Rotation Graphics

Page 10

QB3D Wireframe Design

To expand on the simple wireframe objects of Cube and Hexagon I have

included my Space Shuttle. First draw your object with a plan, front and side

elevation then identify the Nodes (xyz) in their planes XYZ with relevant + -

values. Then select distances between Nodes from which it’s just the tedious job

of listing each Node xyz as lines of DATA.

 Here’s the basic layout design for my Space Shuttle.

Having created your DATA List of Node xyz’s you then need to identify which

Node to connect to which, so as to generate the Frames of your wireframe

Object. Making these DATA lists hopefully should not be to taxing.

These can be added or created as a new QB3D_Data file following the layout

presented on pages 17,18,19. Remember to type in the RESTORE references

nres, vres into OBj_Init and Object names into the Obj_Name Procedure so

they appear on the screen layouts.

QBITS Exploring QL 3D Rotation Graphics

Page 11

QB3D_Wire Procedures

Obj_Name Displays Object Names on screen menu

Obj_Init ` Sets the DATA RESTORE references for Object.

QB3D_Init Sets screen layout and KEY information.

QB3D_Coms Serves as main Menu loop to access functions.
QB3D_Rotate Animation of 3D Object to Loop/Spin/Roll.

Obj_Array Loads Node xyz and sets vector size.

Obj_Calc Calculates new vx,vy coordinates of Object.
Obj_draw Draws Object to screen.

OBj_Fill Frames FILL with colour to present a solid Object.

QB3D Flowchart

QBITS Exploring QL 3D Rotation Graphics

Page 12

This is the basic Program for 3D Rotation Graphics

100 REMark QB3D_Cube (Rotating Cube)
102 :
104 MODE 4:WINDOW 512,200,0,0:PAPER 0:INK 4:CLS:SCALE 100,0,0
106 DIM x(8),y(8),z(8),vx(8),vy(8)
108 vl=16:fs=10000:ra=.1 :REMark Vector length : Focal point: Rotation angle

112 CLS
114 x(1)=-vl:y(1)=-vl:z(1)=-vl :REMark Nodes
116 x(2)=-vl:y(2)=+vl:z(2)=-vl
118 x(3)=+vl:y(3)=+vl:z(3)=-vl
120 x(4)=+vl:y(4)=-vl:z(4)=-vl
122 x(5)=-vl:y(5)=-vl:z(5)=+vl
124 x(6)=-vl:y(6)=+vl:z(6)=+vl
126 x(7)=+vl:y(7)=+vl:z(7)=+vl
128 x(8)=+vl:y(8)=-vl:z(8)=+vl

132 ra=ra+.1:c=COS(ra):s=SIN(ra)

136 FOR np=1 TO 8
138 REMark Rotation on X Axix
140 yt=y(np):y(np)=c*yt-s*z(np):z(np)=s*yt+c*z(np)
142 REMark Rotation on Y Axis
144 xt=x(np):x(np)=c*xt+s*z(np):z(np)=s*xt+c*z(np)
146 REMark Rotation on Z Axis
148 xt=x(np):x(np)=c*xt-s*y(np):y(np)=s*xt+c*y(np)
150 REMark Points Projections and Translations to Screen Coordinates
152 vx(np)=80+(x(np)*fs)/(z(np)+fs)
154 vy(np)=50+(y(np)*fs)/(z(np)+fs)
156 END FOR np

160 LINE vx(1),vy(1) TO vx(2),vy(2) :REMark Vectors
162 LINE vx(2),vy(2) TO vx(3),vy(3)
164 LINE vx(3),vy(3) TO vx(4),vy(4)
166 LINE vx(4),vy(4) TO vx(1),vy(1)
168 LINE vx(5),vy(5) TO vx(6),vy(6)
170 LINE vx(6),vy(6) TO vx(7),vy(7)
172 LINE vx(7),vy(7) TO vx(8),vy(8)
174 LINE vx(8),vy(8) TO vx(5),vy(5)
176 LINE vx(1),vy(1) TO vx(5),vy(5)
178 LINE vx(2),vy(2) TO vx(6),vy(6)
180 LINE vx(3),vy(3) TO vx(7),vy(7)
182 LINE vx(4),vy(4) TO vx(8),vy(8)

186 PAUSE 5
188 GO TO 112

QBITS Exploring QL 3D Rotation Graphics

Page 13

This is the QBITS 3D programs to run on most QL Platforms.

QB3D_Wire512
QB3D_Data01

100 REMark QB3D_Wire512 (Exploring QL 3D Rotation Graphics v.01)

104 MODE 4:OPEN#4,con_10x10a10x10_4
106 OPEN#3,scr_134x108a6x100:PAPER#3,1:SCALE#3,100,0,0:CSIZE#3,0,0
108 WINDOW#2,512,256,0,0:PAPER#2,0:CLS#2:WINDOW#2,512,208,0,0
110 WINDOW#1,364,182,142,26:BORDER#1,1,2:PAPER#1,0:INK#1,7:CLS:SCALE 200,0,0
112 WINDOW#0,496,40,8,210

116 ra=180:gx=140:gy=120:fs=800:vs=.8 :REMark Angle:Global xy:focal scale:vector size
118 aset=-1:cset=1:nset=2 :REMark Toggle switches
120 bg1=0:bg2=7:k=49:wres=512 :REMark Screen settings

124 MERGE flp1_QB3D_Data01

128 QB3D_Init:Obj_Name:Obj_Init:QB3D_Coms

132 DEFine PROCedure QB3D_Init
134 ch=1:CSIZE#ch,0,0:INK#ch,4
136 ch=2:CSIZE#ch,0,1:INK#ch,4
138 CURSOR#ch,300,6:PRINT#ch,'Exploring QL 3D Rotation Graphics'
140 CSIZE#ch,0,0:INK#ch,7
142 CURSOR#ch,6,14:PRINT#ch,'KEYS: Toggle animation On/Off <spacebar>'
144 INK#ch,4
142 CURSOR#ch,6,26:PRINT#ch,'Global x y :< >'
144 CURSOR#ch,6,36:PRINT#ch,'Focal Scale :< D I>'
146 CURSOR#ch,6,46:PRINT#ch,'Node ID On/Off :< N >'
148 CURSOR#ch,6,56:PRINT#ch,'Vector Size :< E R >'
150 CURSOR#ch,6,66:PRINT#ch,'Frame FILL :<F>'
152 CURSOR#ch,6,76:PRINT#ch,'Rotation :Xx Yy Zz'
154 CURSOR#ch,6,86:PRINT#ch,'Background :< B W > '
160 ch=3:BORDER#ch,1,3:INK#ch,2:CLS#ch
162 CURSOR#ch,80,82:PRINT#ch,'Loop'
164 CIRCLE#ch,60,48,24,.25,0:LINE#ch,36,48 TO 60,48
166 INK#ch,4
168 CURSOR#ch,40,4:PRINT#ch,'Spin'
170 CIRCLE#ch,36,76,24,.25,PI/2:LINE#ch,36,48 TO 36,76
172 INK#ch,7
174 CURSOR#ch,30,94:PRINT#ch,'Roll'
176 CIRCLE#ch,26,40,24,.8,0:LINE#ch,26,40 TO 36,48
178 END DEFine

QBITS Exploring QL 3D Rotation Graphics

Page 14

This is the QBITS SMSQ version with screen size 768x512and 16bit colour.

QB3D_Wire768
QB3D_Data01

100 REMark QB3D_Wire768 (Exploring QMSQ 3D Rotation Graphics v.01)

104 MODE 4:OPEN#4,con_0x0a0x0_4
106 OPEN#3,scr_160x160a20x178:PAPER#3,1:SCALE#3,100,0,0:CSIZE#3,0,0
108 WINDOW#2,768,512,0,0:PAPER#2,0:CLS#2:WINDOW#2,754,460,8,4
110 WINDOW#1,548,428,200,32:BORDER#1,2,5:PAPER#1,7:INK#1,0:CLS#1:SCALE#1,320,0,0
112 WINDOW#0,732,40,16,460

116 ra=180:gx=140:gy=120:fs=800:vs=.8 :REMark Angle :Global x,y :focal scale :vector size
118 aset=-1:cset=1:nset=2 :REMark Toggle switches
120 bg1=7:bg2=0:k=49:wres=768 :REMark Screen settings

124 MERGE flp1_QB3D_Data01

128 QB3D_Init:Obj_name:Obj_Init:QB3D_Coms

132 DEFine PROCedure QB3D_Init
134 ch=1:CSIZE#ch,0,0:INK#ch,4
136 ch=2:CSIZE#ch,1,1:INK#ch,5:OVER#ch,1
138 FOR i=1 TO 3:CURSOR#ch,460+i,6:PRINT#ch,'Exploring QL 3D Rotation Graphics'
140 OVER#ch,0:CSIZE#ch,0,1:INK#ch,6
142 CURSOR#ch,12,6:PRINT#ch,'KEYS: Toggle animation On/Off <spacebar>'
144 INK#ch,5
146 CURSOR#ch,12,30:PRINT#ch,'Global x y : < >'
148 CURSOR#ch,12,50:PRINT#ch,'Focal Scale : <D I>'
150 CURSOR#ch,12,70:PRINT#ch,'Node ID On/Off : <N>'
152 CURSOR#ch,12,90:PRINT#ch,'Vector Size : <E R>'
154 CURSOR#ch,12,110:PRINT#ch,'Frame FILL : <F>'
156 CURSOR#ch,12,130:PRINT#ch,'Rotation : Xx Yy Zz'
158 CURSOR#ch,12,150:PRINT#ch,'Background :<B or W>'
160 ch=3:BORDER#ch,1,3:INK#ch,3:CLS#ch
162 CURSOR#ch,120,130:PRINT#ch,'Loop'
164 CIRCLE#ch,60,48,24,.25,0:LINE#ch,36,48 TO 60,48
166 INK#ch,5
168 CURSOR#ch,40,8:PRINT#ch,'Spin'
170 CIRCLE#ch,36,76,24,.25,PI/2:LINE#ch,36,48 TO 36,76
172 INK#ch,6
174 CURSOR#ch,30,140:PRINT#ch,'Roll'
176 CIRCLE#ch,26,40,24,.8,0:LINE#ch,26,40 TO 36,48
178 END DEFine

Note: QB3D_Wire768 uses window sizes above the range of Basic QL 512x256 and with 16bit colour.
Hence the WINDOW size and CURSOR xy pixel coordinates are set to utilise the extra dimensions as is use of
the 8 colours available.

QBITS Exploring QL 3D Rotation Graphics

Page 15

Program from here on the same apart from Global gy and CURSOR settings

182 DEFine PROCedure QB3D_Coms
184 REPeat lp
186 SELect ON k
188 =27 :INK#2,7:CLOSE#3:STOP
190 =66,98 :bg1=0:bg2=7 :PAPER#1,0 :CLS#1 :REMark (B)lack background
192 =87,119 :bg1=7:bg2=0 :PAPER#1,7 :CLS#1 :REMark (W)hite background
194 =49,50,51,52,53 :Obj_Init :REMark Load Object DATA
196 =32 :IF aset=-1:aset=-1:ELSE aset=-1 :REMark Toggle On/Off animation
198 =70,102 :IF cset= 1:cset= 2:ELSE cset= 1 :REMark (F)rame FILL
200 =78,110 :IF nset= 1:nset= 2;ELSE nset=1 :REMark (N)ode ID On/Off
202 =69,101 :vs=vs+.1 :IF vs>=1.5 :vs=1.5 :REMark (E)xpand Vector size
204 =82,114 :vs=vs-.1 :IF vs<= .5 :vs= .5 :REMark (R)educe Vector size
206 =68,100 :fs=fs-10 :IF fs< 80 :fs= 80 :REMark (D)ecrease Focal scale
208 =73,105 :fs=fs+10 :IF fs>800 :fs=800 :REMark (I)ncrease Focal scale
210 =192 :gx=gx-2 :IF gx<= 20 :gx= 20 : :REMark move left
212 =200 :gx=gx+2 :IF gx>=280 :gx=280 :REMark move right
214 =208 :gy=gy+2 :IF gy>=190 :gy=190 :REMark move up
216 =216 :gy=gy-2 :IF gy<= 10 :gy= 10 :REMark move down
218 =88 :rx=rx-15 :IF rx<=0:rx=360 :REMark (x) Clockwise Loop
220 =120 :rx=rx+15 :IF rx>=360:rx=0 :REMark (X) Anti-clockwise Loop
222 =89 :ry=ry-15 :IF ry<=0:ry=360 :REMark (y) Clockwise Spin
224 =121 :ry=ry+15 :IF ry>=360:ry=0 :REMark (Y) Anti-clockwise Spin
226 =90 :rz=rz-15 :IF rz<=0:rz=360 :REMark (z) Clockwise Roll
228 =122 :rz=rz+15 :IF rz>=360:rz=0 :REMark (Z) Anti-clockwsie Roll
230 END SELect
232 Obj_Draw:INK bg2
234 CURSOR 160,168:PRINT 'gx:'&gx&' gy:'&gy&' vs:'&(vs*20)&' fs:'&fs&'
236 CURSOR 12,168:PRINT 'rx:'&rx&' ry:'&ry&' rz:'&rz&' '
238 k=CODE(INKEY$(#4,aset))
240 END REPeat lp
242 END DEFine

Note: QB3D_Wire768 higher screen resolution has an increased pixel range.
214 :IF gy>=300:gy=300
216 :IF gy<= 20:gy= 20
234 CURSOR 320,406
236 CURSOR 12,168

Note: Global gx,gy, vector size vs and focal scale fs are displayed on screen.
 On start up a Cube is displayed.

Selection of (1), (2), (3) displays the selected Object in static mode.
To select background press Keys (B)lack or (W)hite
To switch Node ID On/Off press <N>.
Press <F> tol Fill an Objects Frames to create as solid image.
Press <E> enlarge or <R> reduce to change size of Object.
Press <D> decrease or < I > increase to change Focal scale (Perspective)
For Global positions use the < > cursor keys.
Pressing <xXyYzZ> keys Loops/Spins/Rolls the Object clockwise or anticlockwise.
Pressing the <spacebar> activates the animation to Loop, Spin, Roll the Object.
Pressing the <spacebar> again returns to static mode.

QBITS Exploring QL 3D Rotation Graphics

Page 16

These Procedures are the 3D Rotation Graphics engine.

246 DEFine PROCedure QB3D_Rotate
248 ch=3:OVER#ch,-1
250 INK#ch,7:LINE#ch,26,40 TO 26-20*COS(RAD(ra+90)),40-22*SIN(RAD(ra+90))
252 INK#ch,4:LINE#ch,36,76 TO 36+22*SIN(RAD(ra)),76-7*COS(RAD(ra))
254 INK#ch,2:LINE#ch,60,48 TO 60+7*SIN(RAD(ra)),48-22*COS(RAD(ra))
256 ra=ra-15:IF ra<0:ra=360
258 OVER#ch,0:ch=1
260 rx=rx+5:IF rx>360:rx=0
262 ry=ry+5:IF ry>360:ry=0
264 rz=rz+5:IF rz>360:rz=0
266 END DEFine

270 DEFine PROCedure Obj_Array
272 LOCal lp,a,b,c:RESTORE nres:READ no
274 FOR lp=1 TO no
276 READ a,b,c:x(lp)=a*vs:y(lp)=b*vs:z(lp)=c*vs
278 END FOR lp
280 END DEFine

284 DEFine PROCedure Obj_Calc
286 cx=COS(RAD(rx)):sx=SIN(RAD(rx))
288 cy=COS(RAD(ry)):sy=SIN(RAD(ry))
290 cz=COS(RAD(rz)):sz=SIN(RAD(rz))
292 FOR np=1 TO no
294 yt=y(np):y(np)=cx*yt-sx*z(np):z(np)=sx*yt+cx*z(np)
296 xt=x(np):x(np)=cy*xt+sy*z(np):z(np)=sy*xt+cy*z(np)
298 xt=x(np):x(np)=cz*xt-sz*y(np):y(np)=sz*xt+cz*y(np)
300 vx(np)=gx+(x(np)*fs)/(z(np)+fs)
302 vy(np)=gy+(y(np)*fs)/(z(np)+fs)
304 END FOR np
306 END DEFine

310 DEFine PROCedure Obj_Draw
312 LOCal lp,vn,a,b,c,d,i:RESTORE vres:READ vn:INK bg1
314 FOR lp=1 TO vn
316 READ a,b,c,d,i:FILL 1
318 LINE vx(a),vy(a) TO vx(b),vy(b) TO vx(c),vy(c) TO vx(d),vy(d) TO vx(a),vy(a):FILL 0
320 END FOR lp
322 Obj_Array:FOR n=1 TO no:CURSOR vx(n),vy(n),-2,2:PRINT n
324 IF aset=1:cset=1:QB3D_Rotate
326 Obj_Calc :RESTORE vres:READ vn
328 FOR lp=1 TO vn
330 READ a,b,c,d,i
332 IF cset=1:INK bg2:FILL 0:ELSE INK i:FILL 1:PAUSE 5
334 LINE vx(a),vy(a) TO vx(b),vy(b) TO vx(c),vy(c) TO vx(d),vy(d) TO vx(a),vy(a):FILL 0
336 END FOR lp
338 IF nset=1 AND cset=1:FOR n=1 TO no:CURSOR vx(n),vy(n),-2,2:PRINT n
340 END DEFine

QBITS Exploring QL 3D Rotation Graphics

Page 17

This is the DATA file MERGE’d with the QB3D_Wire? (512 or 768)

400 REMark QB3D_DATA01 (Cube Hexagon Shuttle ? ?)

404 DEFine PROCedure Obj_Name

406 IF wres=512:CURSOR#0,12,4:PRINT#0,' (1)Cube (2)Hexagon (3)Shuttle'

408 IF wres=768
410 CSIZE#2,0,1:INK#2,6

412 CURSOR#2,12,338:PRINT#2,'(1)Cube'

414 CURSOR#2,12,358:PRINT#2,'(2)Hexagon'
416 CURSOR#2,12,378:PRINT#2,'(3)Shuttle'

418 CURSOR#2,12,398:PRINT#2,'(4)?'

420 CURSOR#2,12,418:PRINT#2,'(5)?'

422 END IF

424 END DEFine

Note: When DATA QB3D_Data01 file is MERGE’d with QB3D_Wire program file the wres value

is read and the relative Object names are loaded.

WARNING:

 nres, vres hold line number references to DATA.
(If program Lines are renumbered these references may not still apply)

428 DEFine PROCedure Obj_Init

430 REMark WARNING maintain correct nres:vrs:fres numbers
432 IF k=49 :nres=452 :vres=470 :rx=345 :ry=330 :rz= 0
434 IF k=50 :nres=490 :vres=518 :rx= 15 :ry= 60 :rz= 60
436 IF k=51 :nres=544 :vres=592 :rx= 60 :ry=150 :rz=165
438 REMark IF k=52 :nres=600 :vres=600 :rx= .2 :ry= .2 :rz= .2
440 REMark IF k=53 :nres=600 :vres=600 :rx= .2 :ry= .2 :rz= .2
442 RESTORE nres :READ n:DIM x(n),y(n),z(n),vx(n),vy(n)
444 CLS#1
446 END DEFine

Note:
New Objects DATA can be added with values entered into respective nres, vres, at Lines 432 - 440 to
introduce the new Objects DATA for Nodes & Frames.

Note:
The rx,ry,rz values are based on positioning the Object in line with designed Node points. This way the
sequence of Frames FILLs can be worked out.

QBITS Exploring QL 3D Rotation Graphics

Page 18

450 REMark Cube
452 DATA 8 :REMark Nodes
454 DATA 20, 20,-20 :REMark Node 1
456 DATA -20, 20,-20
458 DATA -20,-20,-20
460 DATA 20,-20,-20 :REMark Node 4
462 DATA 20, 20, 20 :REMark Node 5
464 DATA -20, 20, 20
466 DATA -20,-20, 20
468 DATA 20,-20, 20 :REMark Node 8

472 DATA 6 :REMark Frames
474 DATA 2,3,7,6,2 :REMark back Frame
476 DATA 3,4,8,7,240
478 DATA 5,6,7,8,240
480 DATA 1,2,6,5,240
482 DATA 1,2,3,4,240
484 DATA 1,4,8,5,4 :REMark front Frame

488 REMark Hexagon
490 DATA 12 :REMark Nodes
492 DATA 30, 0,-20 :REMark Node 1
494 DATA 15, 20,-20
496 DATA -15, 20,-20
498 DATA -30, 0,-20
500 DATA -15,-20,-20
502 DATA 15,-20,-20 :REMark Node 6
504 DATA 30, 0, 20 :REMark Node 7
506 DATA 15, 20, 20
508 DATA -15, 20, 20
510 DATA -30, 0, 20
512 DATA -15,-20, 20
514 DATA 15,-20, 20 :REMark node 12

518 DATA 10 :REMark Frames
520 DATA 9,10,11,12,2 :REMark rear frames
522 DATA 9,8,7,12,4
524 DATA 4,5,11,10,2 :REMark side frames
526 DATA 3,4,10,9,2
528 DATA 2,3,9,8,4
530 DATA 1,2,8,7,4
532 DATA 6,1,7,12,4
534 DATA 5,6,12,11,2
536 DATA 3,4,5,6,2 :REMark front frames
538 DATA 3,2,1,6,4

QBITS Exploring QL 3D Rotation Graphics

Page 19

542 REMark Space Shuttle
544 DATA 22 :REMark Nodes
546 DATA 40, 20, 0 :REMark Node 1
548 DATA 22, 20,-20 :REMark Node 2
550 DATA 20, 30, 0
552 DATA 20, 20, 20
554 DATA 20,-20, 20
556 DATA 20,-30, 0
558 DATA 20,-20,-20 :REMark Node 7
560 DATA 40,-20, 0 :REMark Node 8
562 DATA -40, 20,-20 :REMark Node 9
564 DATA -40, 30, 0
566 DATA -40, 20, 20
568 DATA -40,-20, 20
570 DATA -40,-30, 0
572 DATA -40,-20,-20 :REMark Node 14
574 DATA 24, 16, 16 :REMark Node 15
576 DATA 24,-16, 16
578 DATA 30,-14, 8
580 DATA 30, 14, 8 :REMark Node 18
582 DATA -40, 16,-16 :REMark Node 19
584 DATA -40, 16, 16
586 DATA -40,-16, 16
588 DATA -40,-16,-16 :REMark Node 22

592 DATA 16 :REMark Frames
594 DATA 9,10,13,14,243 :REMark rear Frames
596 DATA 10,11,12,13,240
598 DATA 19,20,21,22,0 :REMark Rear Door

600 DATA 2,9,14,7,243 :REMark side Frames
602 DATA 7,5,13,14,243
604 DATA 6,5,12,13,240
606 DATA 5,4,11,12,240
608 DATA 3,4,11,10,240
610 DATA 2,3,10,9,243

612 DATA 1,2,3,1,243 :REMark Front Frames
614 DATA 1,3,4,1,240
616 DATA 1,2,7,8,243
618 DATA 1,4,5,8,240
620 DATA 8,6,7,8,243
622 DATA 8,6,5,8,240
624 DATA 15,16,17,18,0 :REMark Pilot Window

QBITS Exploring QL 3D Rotation Graphics

Page 20

QBITS Exploring 3D Rotation Graphics

Having obtained copies of the QB3D SuperBASIC code and loaded it into a

recognised QL device. Use the QDOS command LRUN, as shown:-

LRUN flp1_QB3D_Wire512

 Note: For most QL platform runs in Mode 4 512x256 screen size.

LRUN flp1_QB3D_Wire768

 Note: For SMSQmulator with screen size 768x512 and 16 bit colour.

Check out the KEYS to activate the various functions and enjoy the experience.

Reading this pdf file if your lacking in knowledge of 3D Rotation Graphics

you’re hopefully gain a better understanding..

QL Emulators

There are several available for the original QL as well as its later spin offs. You

can download these and run them on PC’s, Desktops Laptops and Tablets under

the Windows, Mac or Linux operating systems. Then there are the additional

ROM’s and toolkit extensions and an extensive number of useful programs all

with plenty of helpful documentation available.

Check out Dilwyn’s web site below for downloads helpful information and links

to other suppliers of QL software and documentation.

http://www.dilwyn.me.uk/

